COMMUTING PAIRS OF ISOMETRIES – GENERALIZED POWERS

ZBIGNIEW BURDAK, MAREK KOSIEK, PATRYK PAGACZ AND MAREK SŁOĈIŃSKI

1. Pairs defined by diagrams

The idea of pairs of isometries defined by a diagram appeared in [2]. Recall that a diagram is a set \(J \subset \mathbb{Z}^2 \) such that \((i, j) + J \subset J\) for any pair of nonnegative integers \((i, j)\) where \((i, j) + J := \{(x + i, y + j) : (x, y) \in J\}\).

Definition 1. Let \(J \) be a diagram and \(\mathcal{H} \) be a complex Hilbert space. Put

\[
H = \bigoplus_{(i, j) \in J} H_{i, j} \quad \text{where} \quad H_{i, j} = \mathcal{H}.
\]

For \(x = \{x_{i,j}\}_{(i,j) \in J} \in H \), define \(y = \{y_{i,j}\}_{(i,j) \in J} \in H \) and \(z = \{z_{i,j}\}_{(i,j) \in J} \in H \) by

\[
y_{i,j} = \begin{cases} 0, & (i-1, j) \notin J \\ x_{i-1,j}, & (i-1, j) \in J, \end{cases} \quad \text{and} \quad z_{i,j} = \begin{cases} 0, & (i, j-1) \notin J \\ x_{i,j-1}, & (i, j-1) \in J. \end{cases}
\]

Define isometries \(V_1 \) and \(V_2 \) on \(H \) by

\[
V_1 x = y \in H, \quad V_2 x = z \in H.
\]

We call them the isometries defined by diagram \(J \) and space \(\mathcal{H} \).

If \(\mathcal{H} \) in Definition 1 is one dimensional (\(\mathcal{H} = \mathbb{C} e_{i,j} \)), then the pair of isometries is called simple:

Definition 2. Let \(J \) be a diagram and \(H := \bigoplus_{(i, j) \in J} \mathbb{C} e_{i,j} \) where \(\{e_{i,j}\}_{(i,j) \in J} \) are orthonormal. A pair of isometries \(V_1, V_2 \in L(H) \) defined by \(V_1 e_{i,j} = e_{i+1,j} \), \(V_2 e_{i,j} = e_{i,j+1} \) for all \((i, j) \in J\) is called a simple pair of isometries given by diagram \(J \).

2. Generalized powers

A special type of pairs of isometries are generalized powers defined in [1]. We precede the formal definition by giving some properties and background of the idea of generalized powers. For every such pair it holds equality \(V_1^m = U V_2^m \) for some positive integers \(m, n \) and a unitary operator \(U \). The name “generalized powers” follows from a generalization of the example: \(V_1 = V^n, V_2 = V^m \) where \(V \) is a unilateral shift. In the example we have \(V_1^m = V_2^n \) and \(U = I \). An example of generalized powers which is the most different from the above one is when \(U \) is a bilateral shift. For respective wandering vectors such pair turns out to be a pair of generalized powers but also a pair defined by a diagram. We make a construction of such a pair starting from a diagram. Such a diagram has to be periodic in the following sense [1]:

Definition 3. The diagram \(J \) is periodic if there are positive numbers \(m, n \) such that for \(J_0 := \{(0, 1, \ldots, m - 1) \times \mathbb{Z}\} \cap J \) and \(J_k = J_0 + k(m, n) := \{(i + km, j - kn) : (i, j) \in J_0\} \) it holds \(J = \bigcup_{k \in \mathbb{Z}} J_k \), where \(J_k \) are disjoint for different \(k \). Then set \(J_0 \) is called a period of a diagram.

We now give a precise definition of generalized powers.

Definition 4. Let it be given:

1. a periodic diagram \(J = \bigcup_{k \in \mathbb{Z}} J_k \) with numbers \(m, n \),
(2) unitary operator $U \in L(H)$ and $e \in H$ such that $\bigvee\{U^n e : n \in \mathbb{Z}\} = H$.

Define:

1. Hilbert space $H := \bigoplus_{(i,j) \in J_0} H_{i,j}$ where $H_{i,j} = H$,
2. $\hat{U} \in L(H)$ where $(\hat{U} \oplus_{(i,j) \in J_0} x_{i,j}) = \oplus_{(i,j) \in J_0} U(x_{i,j})$,
3. $e_{i,j} \in H$ a vector such that $P_{H_{k,l}} e_{i,j} = e$ for $(k,l) = (i,j)$ and 0 otherwise, where $(i,j) \in J_0$,
4. $e_{i+km,j-kn} = \hat{U}^k e_{i,j}$ for $(i,j) \in J_0$ and $k \in \mathbb{Z}$,
5. $V_1(e_{i,j}) = e_{i+1,j}$, and $V_2(e_{i,j}) = e_{i,j+1}$.

Then operators V_1, V_2 are called a pair of generalized powers given by a unitary operator $\hat{U} \in L(H)$ and a diagram J.

Proposition 5. Generalized powers are pairs of unilateral shifts.

References

Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, ul. Prof. St. Lojasiewicza 6, 30-348 Kraków, Poland

E-mail address: Marek.Kosiek@im.uj.edu.pl