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Abstract

This contribution presents a numerical method for solving diffusion equation with frac-
tional derivative and Neumann boundary conditions based on finite element method. The
fractional derivative is defined in the Riemann-Liouville sense. The numerical scheme and
an example is introduced.

1 Introduction

Fractional calculus is a mathematical discipline which generalizes concept of derivatives and
integrals by introducing their non-integer order. Although this field has quite long history (first
mentioned by Leibniz in 1695) it attracts attention in last decades. It can be used except of
many other fields also for modeling diffusion phenomena. For introduction to the subject [2],
[3] can be recommended.

Diffusion is usually simulated by the heat equation u(x,t); = u(x,t)., + f(z,t). However
this approach is not suitable for modeling fast diffusion. For that reason the equation is often
non-linearly modified. Diffusion can be also modeled by the fractional diffusion equation (FDE),
which, in addition, is linear.

In this text we introduce numerical scheme for the fractional diffusion equation using finite
element method. Theory of the discrete approximations of the fractional differential equations
contains many open questions.

2 Formulation of the problem

We shall deal with initial-boundary value problem with Neumann boundary conditions (flux is
prescribed on both ends) in the form
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where T' > 0, f(z,t) is a source term and the diffusion term 88—;20Di§u(x,t) is an (2 — v)-th
order fractional derivative of the function u with respect to the space variable x in the Riemann-
Liouville sense for v € [0,1), which will be introduced in details later. Let us remark that if
v =0 Eq. (1) becomes the classical heat equation.
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For the sake of simplicity the Neumann boundary conditions in the problem (1) are set to
zero, adaptation to nonzero ones case causes no problems.

There are several definition of the fractional derivative: Riemann-Liouville, Caputo, Grwiinwald-
Letnikov and others; more information can be found in [4]. We will work with the Riemann-
Liouville approach which is the most common one.

Let v € RT, a,b € R be such that a < b, m € Z* be such that m — 1 < v < m and I'(v)
be the Gamma function.

The left fractional integral of function f(x) is defined by

D@ = [ %f@ aé, v € a.b).

The right fractional integral is defined by

D;%fw) - | %f@) de, z € [ah).

Further the left fractional derivative is defined by

DLt = g [T a6 e o),

and the right fractional derivative is defined by
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Since we need to consider all points of the interval (a,b), we have to utilize both the left and
the right integral. We use also the so-called Riesz fractional integral defined by
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3 Discretization of the Fractional Equation

In this section we develop a numerical method for the problem (1). Problems of the numerical
solution of FDE are caused by the fact that fractional derivative is not local operator and also
by the prescribed Neumann boundary conditions.

The first problem is to decide whether to do discretization first in the time or in the space
variable. The fractional derivative is a global operator which is acting, in our case, on the space
variable, so during the numerical solution it is necessary to know all values of the space variable
in the previous time step(s) and then it is possible to find new ones. Thus to start with the
discretization in space variable and then to solve a set of initial ordinary differential problems
is not possible. For that reason we perform first the time discretization and then we solve a
boundary value problem in each time step. This method is usually called the Rothe method
and is described in detail in [5].

Numerical methods of FDE are usually based on the difference fractional calculus, e.g. [1],
we shall use another approach based on the finite element method (FEM).



3.1 Time discretization

Let us choose equidistant partition of the interval (0, 7") with time step 7 = T'/p. Approximation

of u(z, k7) is denoted by @¥(x) and similarly f*(z) = f(z, k7). Time derivative Zu(z,t) is

replaced by the difference quotient X (@"(z) — a*~'(z)).
In the weak formulation of time semi-discretized problem we are looking for functions @

(k =1, ..,p) satisfying u° = g and
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for all v such that all integrals are properly defined.
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3.2 Space discretization

For the sake of simplicity let the space partition of the interval (0,1) be also equidistant with
step h = 1/N. Let us denote z; = jh, for j =0,..., N. Approximation of @*(x) is denoted by
U*(x) and UF = U*(z;). Test functions v are chosen in standard way as piece-wise linear “tent
functions”.

Let us consider the approximative solution in the form

k _ al k,
Uk(z) = Ufw;(=),
j=0

where w; are basis functions.

How to choose the set of basis functions? Our choice was influenced by two reasons. First
is the fact, that stable solutions of (1) behaves in different way than stable solutions of the heat
equation: stable solution of (1) grows near the boundary. We also want the integrals which
appear during the derivation of FEM scheme to be analytically computable.

For that reasons inner basis functions w; (j = 1,..., N — 1) are piece-wise linear “tent
functions” and the boundary basis functions wy, wy are chosen in different way, namely
1 1— Nz € [0,21] 1 Nzx—N+1 el 1
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0, otherwise, 0, otherwise,
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The hypergeometric function o F} is defined by
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an example of the set of basis function is on the Figure 1.

Applying all above ideas into (2) yields a system of linear equations for U]’?. Since the
fractional derivative depends on all values in the interval (0,1) we can not expect that the
derivatives of functions w; (j =1,..., N — 1) would be zero outside the interval [z;_, ;1]
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For that reason the mass matrix of the system is not spare three-diagonal matrix, which
usually appears in the finite element solution, but it is a full matrix which has some similar
properties as the well-known spare matrix. The elements on the diagonal (except the first and
the last one) are positive and in absolute value are larger than the others in its row, elements
outside the diagonal are negative and rapidly decreasing to zero. For v = 0 mass the matrix
becomes three-diagonal.

Figure 1. Basis functions for v = 0.8.

4 Examples

Let us present an example of numerical solution of the problem (1) for the following values of
parameters: v is successively 0,0.1,0.3,0.6; T = 0.2, time step 7 = 0.01, space steps h = 0.02.
The problem is without source term: f(z,¢) = 0. The initial condition is

g(z) =

2 for z€(0.2;0.7),
0 pro ¢ (0.2;0.7).

The obtained solutions are in Fig. 2. The conservation of mass is evident but there is another
interesting effect. With increasing value of v, the particles are accumulated closer to the
boundaries.

5 Conclusion

We developed a numerical scheme which provides numerical solution for initial Neumann bound-
ary value problem involving the Riemann- Liouville fractional differential equations. The key
idea is to use Rothe method and FEM with special type of basis functions.



Figure 2. Solutions for the various values of v
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