Decompositions of contractions and power bounded operators

Vladimir Müller

Nemecka, 2011

$$A_n(T) = n^{-1} \sum_{i=0}^{n-1} T^i.$$

$$A_n(T) = n^{-1} \sum_{i=0}^{n-1} T^i.$$

Theorem

(mean ergodic theorem)

$$A_n(T) = n^{-1} \sum_{i=0}^{n-1} T^i.$$

Theorem

(mean ergodic theorem)

Let *X* be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n ||T^n|| < \infty$), let $x \in X$.

$$A_n(T) = n^{-1} \sum_{i=0}^{n-1} T^i.$$

Theorem

(mean ergodic theorem)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n ||T^n|| < \infty$), let $x \in X$.

Then $A_n(T)x$ converges to a fixed point of T.

$$A_n(T) = n^{-1} \sum_{i=0}^{n-1} T^i.$$

Theorem

(mean ergodic theorem)

Let *X* be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n ||T^n|| < \infty$), let $x \in X$.

Then $A_n(T)x$ converges to a fixed point of T.

So $A_n(T) \rightarrow P$ (SOT), where P is a projection onto N(T-I)

Theorem (ergodic decomposition)

(ergodic decomposition)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n ||T^n|| < \infty$).

(ergodic decomposition)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n \|T^n\| < \infty$). Let $Y_1 = N(T-I)$ and $Z_1 = \overline{R(T-I)}$.

(ergodic decomposition)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n \|T^n\| < \infty$). Let $Y_1 = N(T-I)$ and $Z_1 = \overline{R(T-I)}$. Then Y_1, Z_1 are complemented T-invariant subspaces, $X = Y_1 \oplus Z_1$

(ergodic decomposition)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n \|T^n\| < \infty$). Let $Y_1 = N(T-I)$ and $Z_1 = \overline{R(T-I)}$. Then Y_1, Z_1 are complemented T-invariant subspaces, $X = Y_1 \oplus Z_1$ and

$$Z_1 = \{x \in X : \lim_{n \to \infty} ||A_n x|| = 0\}, \text{ where } A_n = n^{-1} \sum_{j=0}^{n-1} T^j.$$

orthogonal.

(ergodic decomposition)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator (i.e., $\sup_n \|T^n\| < \infty$). Let $Y_1 = N(T-I)$ and $Z_1 = \overline{R(T-I)}$. Then Y_1, Z_1 are complemented T-invariant subspaces, $X = Y_1 \oplus Z_1$ and $Z_1 = \{x \in X : \lim_{n \to \infty} \|A_n x\| = 0\}$, where $A_n = n^{-1} \sum_{i=0}^{n-1} T^i$.

If T is a Hilbert space contraction, then the spaces Y_1, Z_1 are

Theorem (Jacobs, de Leeuw, Glicksberg)

(Jacobs, de Leeuw, Glicksberg)

Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator.

(Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$.

(Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_2, Z_2 are complemented T-invariant subspaces, $X = Y_2 \oplus Z_2$.

(Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_2, Z_2 are complemented T-invariant subspaces, $X = Y_2 \oplus Z_2$. The subspace Z_2 can be characterized as

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{j=0}^{n-1} |\langle T^j x, x^* \rangle| = 0 \text{ for all } x^* \in X^*$$

characterized as

(Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_2, Z_2 are complemented T-invariant subspaces, $X = Y_2 \oplus Z_2$. The subspace Z_2 can be

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{j=0}^{n-1} |\langle T^j x, x^* \rangle| = 0 \text{ for all } x^* \in X^*$$

$$\Leftrightarrow D - \lim_{n \to \infty} \langle T^j x, x^* \rangle = 0$$
 for all $x^* \in X^*$

characterized as

(Jacobs, de Leeuw, Glicksberg) Let X be a reflexive Banach space, let $T \in B(X)$ be a power bounded operator. Let $Y_2 = \bigvee_{|\lambda|=1} N(T-\lambda)$ and $Z_2 = \bigcap_{|\lambda|=1} \overline{R(T-\lambda)}$. Then Y_2, Z_2 are complemented T-invariant subspaces, $X = Y_2 \oplus Z_2$. The subspace Z_2 can be

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{j=0}^{n-1} |\langle T^j x, x^* \rangle| = 0 \text{ for all } x^* \in X^*$$

$$\Leftrightarrow D - \lim_{n \to \infty} \langle T^j x, x^* \rangle = 0 \text{ for all } x^* \in X^*$$

 \Leftrightarrow there exists a subsequence (n_k) such that $T^{n_k}x \to 0$ weakly.

If T is a Hilbert space contraction, then the spaces Y_2, Z_2 are orthogonal

If T is a Hilbert space contraction, then the spaces Y_2, Z_2 are orthogonal and

$$x \in Z_2 \Leftrightarrow \lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} |\langle T^j x, x \rangle| = 0.$$

Theorem, (Foguel decomposition)

(Foguel decomposition)

Let $T \in B(H)$ be a Hilbert space contraction.

(Foguel decomposition)

Let $T \in B(H)$ be a Hilbert space contraction. Let

$$Z_3 = \{x \in H : T^n x \rightarrow 0 \text{ weakly}\}$$

(Foguel decomposition)

Let $T \in B(H)$ be a Hilbert space contraction. Let

$$Z_3 = \{x \in H : T^n x \rightarrow 0 \text{ weakly}\}$$

and Y₃ is the linear span of the set

(Foguel decomposition)

Let $T \in B(H)$ be a Hilbert space contraction. Let

$$Z_3 = \{x \in H : T^n x \rightarrow 0 \text{ weakly}\}$$

and Y₃ is the linear span of the set

$$\{x\in H: \textit{there are } (n_k)\subset \mathbb{N} \textit{ and } y\in H \textit{ with } w-\lim_{k\to\infty} T^{n_k}y=x\}.$$

(Foguel decomposition)

Let $T \in B(H)$ be a Hilbert space contraction. Let

$$Z_3 = \{x \in H : T^n x \rightarrow 0 \text{ weakly}\}$$

and Y₃ is the linear span of the set

$$\{x\in H: \textit{there are } (n_k)\subset \mathbb{N} \textit{ and } y\in H \textit{ with } w-\lim_{k\to\infty} T^{n_k}y=x\}.$$

Then Y_3 , Z_3 are T-invariant subspaces and $H = Y_3 \oplus Z_3$ (orthogonal sum).

Theorem (singular / absolutely continuous decomposition)

(singular / absolutely continuous decomposition) Let $T \in B(H)$ be a Hilbert space contraction.

(singular / absolutely continuous decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let Y_4 and Z_4 be the sets of all $x \in H$ such that there exists a singular (absolutely continuous) measure μ_x with

$$\langle p(T)x, x\rangle = \int p \, \mathrm{d}\mu_x$$

for all polynomials p.

(singular / absolutely continuous decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Let Y_4 and Z_4 be the sets of all $x \in H$ such that there exists a singular (absolutely continuous) measure μ_x with

$$\langle p(T)x, x\rangle = \int p \,\mathrm{d}\mu_X$$

for all polynomials p. Then Y_4, Z_4 are orthogonal T-invariant subspaces and $H = Y_3 \oplus Z_3$.

(unitary / completely non-unitary decomposition)

(unitary / completely non-unitary decomposition) Let $T \in B(H)$ be a Hilbert space contraction.

(unitary / completely non-unitary decomposition) Let $T \in B(H)$ be a Hilbert space contraction. Then there are orthogonal T-invariant subspaces $Y_5, Z_5 \subset H$ such that $T|Y_5$ is unitary and $T|Z_5$ completely non-unitary.