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Basic Definition
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Introduction

Basic Definition

e Left fractional integral of f (x)

D@ = [ %f@) ac, v € a,b)

e Left fractional derivative of f (x)

m T v—1
Dufa) = o [ EE @ a6 v e o

e Riesz fractional integral of f (x) is defined by the expression

(0D, y(x) + Dy y()) .

N | =

oD y(z) =
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Introduction

Problem

0 0?2 .,

gu(x,t) =52 oDy u(z,t) + f(z,t), x€(0,1), te(0,T),

u(z,0) = g(z), z € (0,1),

9 v
aoDl,zu(gj’t}'z:o =0, te(0,7),
9 v
goDmu(as,tﬂm:l =0, te(0,T).
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Discretization

Time Discretization

Time derivative 2-u(z, t) is replaced by 1 (@*(z) — @~ 1(z)).
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Discretization

Time Discretization

Time derivative 2-u(z, t) is replaced by 1 (@*(z) — @~ 1(z)).

In the weak formulation of time semi-discretized problem we are
looking for such functions @* for which holds:

1 1 1
—/ ﬂkvdw—i—/ 3()Dll’uvdaz—/ fFode + = / i lv da,
T Jo 0 8.77

_g7

for all v for which all integrals are properly defined.

k|
fie



Discretization

Space Discretization

The space partition of the interval (0,1) is equidistant with
step h =1/N.
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Discretization

Space Discretization

The space partition of the interval (0,1) is equidistant with
step h =1/N.

Let us consider the approximative solution in the form

N
Ur(z) = Ufw;(),
j=0
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Discretization

Space Discretization

The space partition of the interval (0,1) is equidistant with
step h =1/N.

Let us consider the approximative solution in the form
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The problems with choice of basis and test functions are:
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Discretization

Space Discretization

The space partition of the interval (0,1) is equidistant with
step h =1/N.

Let us consider the approximative solution in the form
N
UM@) =) Ufwj(a),
j=0

The problems with choice of basis and test functions are:
e Stable solutions grows near the boundary.
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Discretization

Space Discretization

The space partition of the interval (0,1) is equidistant with
step h =1/N.

Let us consider the approximative solution in the form
N
UM@) =) Ufwj(a),
j=0

The problems with choice of basis and test functions are:
e Stable solutions grows near the boundary.
e We want the integrals which appear during the derivation of
FEM scheme to be analytically computable. T
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Discretization

Basis Functions

N

. . IEZAN:
Basis functions for v = 0.8. !(E



Discretization

Matrix of the System

e Mass matrix of the system is not spare three-diagonal matrix,
but it is a full matrix
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Discretization

Matrix of the System

e Mass matrix of the system is not spare three-diagonal matrix,
but it is a full matrix

e Elements on the diagonal (except the first and the last one)
are positive and in absolute value are larger than the others in
its row.
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Discretization

Matrix of the System

e Mass matrix of the system is not spare three-diagonal matrix,
but it is a full matrix

e Elements on the diagonal (except the first and the last one)
are positive and in absolute value are larger than the others in
its row.

e Elements outside the diagonal are negative and rapidly
decreasing to zero.
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Discretization

Matrix of the System

e Mass matrix of the system is not spare three-diagonal matrix,
but it is a full matrix

e Elements on the diagonal (except the first and the last one)
are positive and in absolute value are larger than the others in
its row.

e Elements outside the diagonal are negative and rapidly
decreasing to zero.

e For v = 0 mass the matrix becomes three-diagonal.
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Examples

Example

Values of parameters are:

e order of the derivation v is successively 0,0.1,0.3,0.6;
e final time T'= 0.2

e time step 7 = 0.01

e space steps h = 0.02

e problem is without source term: f(x,t) =0
the initial condition is

2 for x€(0.20.7),
g(x) =
0 pro z¢(0.2;0.7).
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