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P. Nováčková, T. Kisela A finite element solution for the fractional equation 2/12



Introduction Discretization Examples

Basic Definition

• Left fractional integral of f (x)

aD
−ν
x f(x) =

∫ x

a

(x− ξ)ν−1

Γ(ν)
f(ξ) dξ, x ∈ [a, b)

• Left fractional derivative of f (x)

aD
ν
xf(x) =

dm

dxm

∫ x

a

(x− ξ)ν−1

Γ(ν)
f(ξ) dξ, x ∈ [a, b)

• Riesz fractional integral of f (x) is defined by the expression

0D
−ν
1 y(x) =

1

2

(
0D

−ν
x y(x) + xD

−ν
1 y(x)

)
.
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Problem

∂

∂t
u(x, t) =

∂2

∂x2
0D
−ν
1,xu(x, t) + f(x, t) , x ∈ (0, 1) , t ∈ (0, T ) ,

u(x, 0) = g(x) , x ∈ (0, 1) ,

∂

∂x
0D
−ν
1,xu(x, t)

∣∣
x=0

= 0 , t ∈ (0, T ) ,

∂

∂x
0D
−ν
1,xu(x, t)

∣∣
x=1

= 0 , t ∈ (0, T ) .
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Time Discretization

Time derivative ∂
∂tu(x, t) is replaced by 1

τ

(
ũk(x)− ũk−1(x)

)
.

P. Nováčková, T. Kisela A finite element solution for the fractional equation 5/12



Introduction Discretization Examples

Time Discretization

Time derivative ∂
∂tu(x, t) is replaced by 1

τ

(
ũk(x)− ũk−1(x)

)
.

In the weak formulation of time semi-discretized problem we are
looking for such functions ũk for which holds:

1

τ

∫ 1

0
ũkv dx+

∫ 1

0

∂

∂x
0D
−ν
1 ũkv′ dx =

∫ 1

0
fkv dx+

1

τ

∫ 1

0
ũk−1v dx,

ũ0 = g,

for all v for which all integrals are properly defined.
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Space Discretization

The space partition of the interval (0,1) is equidistant with
step h = 1/N .

Let us consider the approximative solution in the form

Uk(x) =
N∑
j=0

Ukj wj(x),

The problems with choice of basis and test functions are:

• Stable solutions grows near the boundary.
• We want the integrals which appear during the derivation of

FEM scheme to be analytically computable.
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Basis Functions

Basis functions for ν = 0.8.
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Matrix of the System

• Mass matrix of the system is not spare three-diagonal matrix,
but it is a full matrix

• Elements on the diagonal (except the first and the last one)
are positive and in absolute value are larger than the others in
its row.

• Elements outside the diagonal are negative and rapidly
decreasing to zero.

• For ν = 0 mass the matrix becomes three-diagonal.
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Example

Values of parameters are:

• order of the derivation ν is successively 0, 0.1, 0.3, 0.6;

• final time T = 0.2

• time step τ = 0.01

• space steps h = 0.02

• problem is without source term: f(x, t) ≡ 0

• the initial condition is

g(x) =

{
2 for x ∈ (0.2; 0.7),

0 pro x /∈ (0.2; 0.7).
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