Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control

Nemecká, September 5–10, 2011

METHOD OF RELIABLE SOLUTION IN HOMOGENIZATION

Jan Franců

joint work with

Luděk Nechvátal

Institut of Mathematics
Faculty of Mechanical Engineering
Brno University of Technology

e-mail: francu@fme.vutbr.cz

Uncertain data problem and Reliable solution

Mathematical modeling of an engineering problem

- Differential equation(s)
- Boundary and/or initial conditions
- Data of the problem: domain and its boundary, coefficients, functions in the equation and in the conditions.

Uncertain data problem and Reliable solution

Mathematical modeling of an engineering problem

- Differential equation(s)
- Boundary and/or initial conditions
- Data of the problem: domain and its boundary, coefficients, functions in the equation and in the conditions.

Problem:

```
data are not known exactly:
every coefficient can be anywhere within an interval
also geometry is not know exactly
```

Solutions

Stochastic approach

- data: random variables, distribution function, . . .
- stochastic differential equations
- complicated theory, . . .

Solutions

Stochastic approach

- data: random variables, distribution function, . . .
- stochastic differential equations
- complicated theory, . . .

Babuška's idea: Deterministic approach

- full deterministic model
- all possible data are considered
- the worst situation is looked for
- using optimization algorithms

Basic idea

Problem with uncertain data

Reliable solution

Worst scenario method

Basic idea

Problem with uncertain data

Reliable solution

Worst scenario method

- ightharpoonup choose a set \mathscr{U}^{ad} of all admissible data a
- find solution u_a of the problem (P[a]) with data a
- chose a critical functional $\Phi(u)$ on the solution u
- ▶ look for the maximum value of $\Phi(u_a)$ for $u \in \mathscr{U}^{\mathsf{ad}}$
- ▶ find a the giving maximum value.

🔋 I. Hlaváček, J. Chleboun, I. Babuška:

Uncertain input data problems and the worst scenario method, Applied Mathematics and Mechanics, North Holland 2004.

Homogenization

▶ Physical setting

Homogenization

▶ Physical setting

Mathematical setting

$$-\mathsf{div}\left(a_p(x)\nabla u_p\right) = f$$

$$-\operatorname{div}(b\nabla u)=f$$

Homogenization

Physical setting

Mathematical setting

$$-\operatorname{div}(a_p(x)\nabla u_p) = f \qquad \qquad -\operatorname{div}(b\nabla u) = f$$

► Computation reason: fine structure needs fine discretization and large number of unknowns and equations.

Homogenization-Mathematical Approach

► Sequence of problems with diminishing period (Babuška 1972)

Homogenization-Mathematical Approach

Sequence of problems with diminishing period (Babuška 1972)

▶ In the mathematical setting: $\{\varepsilon_h\}, \quad \varepsilon_h \to 0$

$$-\operatorname{div}\left(a^{\varepsilon}(x)u^{\varepsilon}\right)=f$$
 $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ $a(y)-Y-\operatorname{periodic}$

Homogenization-Mathematical Approach

► Sequence of problems with diminishing period (Babuška 1972)

▶ In the mathematical setting: $\{\varepsilon_h\}$, $\varepsilon_h \to 0$

$$-\operatorname{div}\left(a^{\varepsilon}(x)u^{\varepsilon}\right)=f$$
 $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ $a(y)-Y-\operatorname{periodic}$

- Questions:
 - Convergence of the solutions $u^{\varepsilon} \rightarrow u^*$
 - Form of the limit problem $-\text{div}(b u^*) = f$
 - Formulae for the so-called homogenized coefficients b,

Model problem

Linear elliptic problem

$$-\operatorname{div}(a \nabla u_a) \equiv -\sum_{i=1,j}^{N} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) = f \quad \text{in } \Omega$$
$$u_a = 0 \quad \text{on } \partial \Omega.$$

Model problem

Linear elliptic problem

$$-\operatorname{div}(a \nabla u_a) \equiv -\sum_{i=1,j}^{N} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) = f \quad \text{in } \Omega$$
$$u_a = 0 \quad \text{on } \partial \Omega.$$

The solution is taken in the so-called weak sense:

PROBLEM (**P[a]**) Find a function $u_a \in W_0^{1,2}(\Omega)$ satisfying

$$\boldsymbol{a}_{a}(u_{a},v) \equiv \int_{\Omega} \sum_{i,j=1}^{N} a_{ij}(x) \frac{\partial u_{a}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx = \int_{\Omega} f v dx. \quad \forall v \in W_{0}^{1,2}(\Omega).$$

 Ω – domain with Lipschitz boundary, $f \in L^2(\Omega)$

 Ω – domain with Lipschitz boundary, $f \in L^2(\Omega)$ and coefficient matrix $a_{ij} \in L^\infty(\Omega)$, $a_{ji} = a_{ij}$,

$$\alpha \sum_{i=1}^{N} \xi_i^2 \leq \sum_{i,j=1}^{N} a_{ij}(x) \xi_j \xi_i \leq M \sum_{i=1}^{N} \xi_i^2 \quad \forall \xi \in \mathbb{R}^N.$$

 Ω – domain with Lipschitz boundary, $f \in L^2(\Omega)$ and coefficient matrix $a_{ij} \in L^\infty(\Omega)$, $a_{ji} = a_{ij}$,

$$\alpha \sum_{i=1}^{N} \xi_i^2 \leq \sum_{i,j=1}^{N} a_{ij}(x) \xi_j \xi_i \leq M \sum_{i=1}^{N} \xi_i^2 \quad \forall \xi \in \mathbb{R}^N.$$

Notation: $\mathscr{E}(\alpha, M)$ — set of all such coefficient matrix a with $0 < \alpha \le M$.

 Ω – domain with Lipschitz boundary, $f \in L^2(\Omega)$ and coefficient matrix $a_{ij} \in L^\infty(\Omega)$, $a_{ji} = a_{ij}$,

$$\alpha \sum_{i=1}^{N} \xi_i^2 \leq \sum_{i,j=1}^{N} a_{ij}(x) \xi_j \xi_i \leq M \sum_{i=1}^{N} \xi_i^2 \quad \forall \xi \in \mathbb{R}^N.$$

Notation: $\mathscr{E}(\alpha, M)$ — set of all such coefficient matrix a with $0 < \alpha \le M$.

Following the Lax-Milgram lemma Problem (P[a]) for $a \in \mathcal{E}(\alpha, M)$ admits unique solution u_a

 Ω – domain with Lipschitz boundary, $f \in L^2(\Omega)$ and coefficient matrix $a_{ij} \in L^\infty(\Omega)$, $a_{ji} = a_{ij}$,

$$\alpha \sum_{i=1}^{N} \xi_i^2 \leq \sum_{i,j=1}^{N} a_{ij}(x) \xi_j \xi_i \leq M \sum_{i=1}^{N} \xi_i^2 \quad \forall \xi \in \mathbb{R}^N.$$

Notation: $\mathscr{E}(\alpha, M)$ — set of all such coefficient matrix a with $0 < \alpha \le M$.

Following the Lax-Milgram lemma Problem (P[a]) for $a \in \mathcal{E}(\alpha, M)$ admits unique solution u_a and, in addition,

$$\|u_a\|_{1,2} \leq \frac{1}{\alpha} \|f\|_2$$
.

Scale – a sequence $E = \{\varepsilon_n\}_{n=1}^{\infty} \ \varepsilon_n > \varepsilon \to 0$ The sequences are denoted with a superscript $\varepsilon_n \in E$, $a^{\varepsilon_n} \to a^{\varepsilon}$.

Scale – a sequence $E = \{\varepsilon_n\}_{n=1}^{\infty} \ \varepsilon_n > \varepsilon \to 0$ The sequences are denoted with a superscript $\varepsilon_n \in E$, $a^{\varepsilon_n} \to a^{\varepsilon}$. Basic cell – $Y = \langle 0, 1 \rangle^N$.

Basic cell – $Y = (0,1)^N$. shifted cells $Y_k = Y + k = \{y + k \mid y \in Y\}$ $k_i \in \mathbb{Z}$ – a pavement of the space \mathbb{R}^N ,

Scale – a sequence $E = \{\varepsilon_n\}_{n=1}^{\infty} \ \varepsilon_n > \ \varepsilon \to 0$ The sequences are denoted with a superscript $\varepsilon_n \in E$, $a^{\varepsilon_n} \to a^{\varepsilon}$.

Basic cell $-Y = (0,1)^N$. shifted cells $Y_k = Y + k = \{y + k \mid y \in Y\}$ $k_i \in \mathbb{Z}$ — a pavement of the space \mathbb{R}^N ,

Y-periodic function: if $a(y + k) = a(y) \ \forall \ y \in \mathbb{R}^N \ \forall \ k \in \mathbb{Z}^N$.

Scale – a sequence $E = \{\varepsilon_n\}_{n=1}^{\infty} \ \varepsilon_n > \ \varepsilon \to 0$ The sequences are denoted with a superscript $\varepsilon_n \in E$, $a^{\varepsilon_n} \to a^{\varepsilon}$.

Basic cell – $Y = (0,1)^N$. shifted cells $Y_k = Y + k = \{y + k \mid y \in Y\}$ $k_i \in \mathbb{Z}$ – a pavement of the space \mathbb{R}^N ,

Y-periodic function: if $a(y + k) = a(y) \ \forall \ y \in \mathbb{R}^N \ \forall \ k \in \mathbb{Z}^N$.

Let a be a Y-periodic function, then

$$a^{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right) \equiv a\left(\frac{x_1}{\varepsilon}, \dots, \frac{x_N}{\varepsilon}\right), \quad x \in \Omega$$

is a sequence $\{a^{\varepsilon} \mid \varepsilon \in E\}$ of Y^{ε} -periodic functions on Ω with diminishing period ε .

Homogenization – formulation of the problem

For $\varepsilon \in E$ and a Y-periodic matrix function $a: \Omega \to \mathbb{R}^{N \times N}$ we obtain a ε -periodic functions a_{ij}^{ε} and problem with ε -periodic coefficients:

PROBLEM ($P[a^{\varepsilon}]$) Find a function $u_{a^{\varepsilon}} \in W_0^{1,2}(\Omega)$ satisfying

$$\boldsymbol{a}_{a^{\varepsilon}}(u_{a^{\varepsilon}},v) \equiv \int_{\Omega} \sum_{i,j=1}^{N} a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial u_{a^{\varepsilon}}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx = \int_{\Omega} f \, v dx \quad \forall \, v \in W_{0}^{1,2}(\Omega).$$

Homogenization – formulation of the problem

For $\varepsilon \in E$ and a Y-periodic matrix function $a: \Omega \to \mathbb{R}^{N \times N}$ we obtain a ε -periodic functions a_{ij}^{ε} and problem with ε -periodic coefficients:

PROBLEM ($P[a^{\varepsilon}]$) Find a function $u_{a^{\varepsilon}} \in W_0^{1,2}(\Omega)$ satisfying

$$\boldsymbol{a}_{a^{\varepsilon}}(u_{a^{\varepsilon}},v) \equiv \int_{\Omega} \sum_{i,i=1}^{N} a_{ij} \left(\frac{x}{\varepsilon}\right) \frac{\partial u_{a^{\varepsilon}}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx = \int_{\Omega} f \, v dx \quad \forall \, v \in W_{0}^{1,2}(\Omega).$$

The problem ($P[a^{\varepsilon}]$) admits unique solution $u_{a^{\varepsilon}}$.

Homogenization – results

Taking a scale $E = \{\varepsilon\}$ we obtain a sequence $\{u_{a^{\varepsilon}}\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

Homogenization – results

Taking a scale $E = \{\varepsilon\}$ we obtain a sequence $\{u_{a^{\varepsilon}}\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

The well known result:

$$u_{a^{arepsilon}} o u_{b^{a}}$$
 weakly in $W^{1,2}(\Omega)$

Homogenization – results

Taking a scale $E = \{\varepsilon\}$ we obtain a sequence $\{u_{a^{\varepsilon}}\}$. The sequence is bounded in $W^{1,2}(\Omega)$.

The well known result:

$$u_{a^{arepsilon}}
ightarrow u_{b^{a}}$$
 weakly in $W^{1,2}(\Omega)$

▶ u_{b^a} is a solution to the same type problem but with the so-called homogenized coefficients – matrix of constant function b^a :

PROBLEM ($P[b^a]$) Find a function $u_{b^a} \in W_0^{1,2}(\Omega)$ satisfying

$$\boldsymbol{a}_{b^a}(u_{b^a},v) \equiv \int_{\Omega} \sum_{i,i=1}^N b_{ij}^a \frac{\partial u_{b^a}}{\partial x_j} \frac{\partial v}{\partial x_i} \mathrm{d}x = \int_{\Omega} f v \mathrm{d}x. \quad \forall \, v \in W_0^{1,2}(\Omega).$$

Homogenized coefficients

▶ The homogenized coefficients b^a are given by

$$b_{ij}^{a} = \int_{Y} \left[a_{ij}(y) + \sum_{k=1}^{N} a_{ik}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y) \right] dy,$$

Homogenized coefficients

ightharpoonup The homogenized coefficients b^a are given by

$$b_{ij}^{a} = \int_{Y} \left[a_{ij}(y) + \sum_{k=1}^{N} a_{ik}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y) \right] dy,$$

where w_a^k are Y-periodic solutions to

PROBLEM (
$$\mathbf{P}_{per}[a]$$
) Find $w_a = (w_a^1, \dots, w_a^N)$, $w_a^k \in W_{per}^{1,2}(Y)$:

$$\int_{Y} \left[\sum_{i,j=1}^{N} a_{ij}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial y_{i}} + \sum_{i=1}^{N} a_{ik}(y) \frac{\partial \varphi}{\partial y_{i}} \right] dy = 0 \quad \forall \varphi \in W_{per}^{1,2}(Y)$$

$$\int_Y w_a^k(y) \mathrm{d}y = 0.$$

Homogenized coefficients

ightharpoonup The homogenized coefficients b^a are given by

$$b_{ij}^{a} = \int_{Y} \left[a_{ij}(y) + \sum_{k=1}^{N} a_{ik}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}}(y) \right] dy,$$

where w_a^k are Y-periodic solutions to

PROBLEM (
$$\mathbf{P}_{per}[a]$$
) Find $w_a = (w_a^1, \dots, w_a^N)$, $w_a^k \in W_{per}^{1,2}(Y)$:

$$\int_{Y} \left[\sum_{i,j=1}^{N} a_{ij}(y) \frac{\partial w_{a}^{k}}{\partial y_{j}} \frac{\partial \varphi}{\partial y_{i}} + \sum_{i=1}^{N} a_{ik}(y) \frac{\partial \varphi}{\partial y_{i}} \right] dy = 0 \quad \forall \, \varphi \in W_{per}^{1,2}(Y)$$

$$\int_Y w_a^k(y) \mathrm{d}y = 0.$$

- ► The homogenized coefficients b_{ij}^a form also a positive definitive matrix.
- ▶ If a_{ij} are symmetric, then the matrix b^a is in the same class $\mathscr{E}(\alpha, M)$.

Uncertain data

► Two component composite material is considered: $Y = Y_1 \cup Y_0$ – reinforcing fibres and matrix.

$$a_{ij}(y) = \left\{ egin{array}{ll} p_{ij}^1 & ext{ for } y \in Y_1, \ p_{ij}^0 & ext{ for } y \in Y_0 \end{array}
ight.$$

- ► The set of all such functions $a_{ij}(y)$ with $p_{ij}^1 \in I_{ij}^1$ and $p_{ij}^0 \in I_{ij}^0$ assumed, that it is a subset of $\mathscr{E}(\alpha, M)$ will be the set of admissible functions $\mathscr{U}^{\mathrm{ad}}$.
- ▶ By its construction it is a bounded closed subset in $L_{per}^{\infty}(Y)$
- ▶ W^{ad} is finite dimensional it is compact

How to choose the functional Φ evaluating dangerous situations?

▶ Functions from $W^{1,2}(\Omega)$ need not be continuous

How to choose the functional Φ evaluating dangerous situations?

- ▶ Functions from $W^{1,2}(\Omega)$ need not be continuous
- ▶ Choose small Ω^* of Ω which covers the critical place and put the integral mean of over it.

How to choose the functional Φ evaluating dangerous situations?

- ▶ Functions from $W^{1,2}(\Omega)$ need not be continuous
- ▶ Choose small Ω^* of Ω which covers the critical place and put the integral mean of over it.
- In homogenization the values of the homogenized solution u_{b³} are tested:

$$\Phi(a) = \frac{1}{|\Omega^*|} \int_{\Omega^*} u_{b^a}(x) \mathrm{d}x,$$

How to choose the functional Φ evaluating dangerous situations?

- ▶ Functions from $W^{1,2}(\Omega)$ need not be continuous
- ▶ Choose small Ω^* of Ω which covers the critical place and put the integral mean of over it.
- ▶ In homogenization the values of the homogenized solution u_{b^a} are tested:

$$\Phi(a) = \frac{1}{|\Omega^*|} \int_{\Omega^*} u_{b^a}(x) dx,$$

▶ Another possibility is to test gradient of the homogenized solution u_{b^a} .

Main result

THEOREM. The functional Φ on \mathcal{U}^{ad} attains its maximum.

Main result

THEOREM. The functional Φ on \mathcal{U}^{ad} attains its maximum.

Idea of the proof.

- ▶ Take a maximizing sequence a_n .
- ▶ Due to compactness of \mathscr{U}^{ad} there is a subsequence $a_{n'}$ converging to a^*
- ▶ Due to continuity based on estimates $\lim_{n'\to\infty} \Phi(a_{n'}) = \Phi(a^*)$
- $ightharpoonup a^*$ yields the maximum value on \mathscr{U}^{ad}

$$|\Phi(a) - \Phi(a')| \le \text{const.} \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)},$$

$$|\Phi(a) - \Phi(a')| \le \text{const.} \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)},$$

 $\|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)} \le \text{const.} \max_{i,j} |b_{ij}^a - b_{ij}^{a'}|,$

$$\begin{aligned} \left| \Phi(a) - \Phi(a') \right| &\leq \text{const.} \, \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)}, \\ \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)} &\leq \text{const.} \, \max_{i,j} \left| b_{ij}^a - b_{ij}^{a'} \right|, \\ \max_{i,j} \left| b_{ij}^a - b_{ij}^{a'} \right| &\leq \text{const.} \, \|w_a - w_{a'}\|_{W^{1,2}_{\text{per}}(Y, \mathbb{R}^N)}, \end{aligned}$$

$$\begin{aligned} \left| \Phi(a) - \Phi(a') \right| &\leq \text{const.} \, \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)}, \\ \|u_{b^a} - u_{b^{a'}}\|_{W^{1,2}(\Omega)} &\leq \text{const.} \, \max_{i,j} \left| b_{ij}^a - b_{ij}^{a'} \right|, \\ \max_{i,j} \left| b_{ij}^a - b_{ij}^{a'} \right| &\leq \text{const.} \, \|w_a - w_{a'}\|_{W^{1,2}_{\text{per}}(Y,\mathbb{R}^N)}, \\ \|w_a - w_{a'}\|_{W^{1,2}_{\text{per}}(Y)} &\leq \text{const.} \, \|a - a'\|_{L^{\infty}(Y,\mathbb{R}^{N\times N})}. \end{aligned}$$

Generalizations

- Problems with strongly monotone operator
- Evolution problems
- uncertainty in geometry
-

