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Uncertain data problem and Reliable solution

Mathematical modeling of an engineering problem

I Differential equation(s)

I Boundary and/or initial conditions

I Data of the problem:
domain and its boundary, coefficients, functions in the
equation and in the conditions.

Problem:
data are not known exactly:

every coefficient can be anywhere within an interval
also geometry is not know exactly
. . . . . .
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Solutions

Stochastic approach

I data: random variables, distribution function, . . .

I stochastic differential equations

I complicated theory, . . .

Babuška’s idea: Deterministic approach

I full deterministic model

I all possible data are considered

I the worst situation is looked for

I using optimization algorithms
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Basic idea

Problem with uncertain data

Reliable solution

Worst scenario method

I choose a set U ad of all admissible data a

I find solution ua of the problem (P[a]) with data a

I chose a critical functional Φ(u) on the solution u

I look for the maximum value of Φ(ua) for u ∈ U ad

I find a the giving maximum value.
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I. Hlaváček, J. Chleboun, I. Babuška:
Uncertain input data problems and the worst scenario method,
Applied Mathematics and Mechanics, North Holland 2004.



Homogenization

I Physical setting
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I Mathematical setting

−div (ap(x)∇up) = f − div (b∇u) = f

I Computation reason: fine structure needs fine discretization
and large number of unknowns and equations.
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Homogenization-Mathematical Approach
I Sequence of problems with diminishing period (Babuška 1972)
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I In the mathematical setting: {εh}, εh → 0

−div (aε(x)uε) = f aε(x) = a
(x
ε

)
a(y)− Y−periodic

I Questions:
• Convergence of the solutions uε → u∗

• Form of the limit problem −div (b u∗) = f
• Formulae for the so-called homogenized coefficients b,
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Model problem

Linear elliptic problem

−div (a∇ua) ≡ −
N∑

i=1,j

∂

∂xi

(
aij(x)

∂u

∂xj

)
= f in Ω

ua = 0 on ∂Ω.

The solution is taken in the so-called weak sense:

Problem (P[a]) Find a function ua ∈W 1,2
0 (Ω) satisfying

aa(ua, v) ≡
∫

Ω

N∑
i ,j=1

aij(x)
∂ua
∂xj

∂v

∂xi
dx =

∫
Ω
fvdx . ∀ v ∈W 1,2

0 (Ω).
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Assumptions

Ω – domain with Lipschitz boundary, f ∈ L2(Ω)

and

coefficient matrix aij ∈ L∞(Ω), aji = aij ,

α
N∑
i=1

ξ2
i ≤

N∑
i ,j=1

aij(x)ξjξi ≤ M
N∑
i=1

ξ2
i ∀ ξ ∈ RN .

Notation: E(α,M) — set of all such coefficient matrix a with
0 < α ≤ M.

Following the Lax-Milgram lemma Problem (P[a]) for a ∈ E(α,M)
admits unique solution ua and, in addition,

‖ua‖1,2 ≤
1

α
‖f ‖2 .
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Homogenization – preliminaries

Scale – a sequence E = {εn}∞n=1 εn > ε→ 0
The sequences are denoted with a superscript εn ∈ E , aεn → aε.

Basic cell – Y = 〈0, 1)N .
shifted cells Yk = Y + k = {y + k | y ∈ Y } ki ∈ Z – a
pavement of the space RN ,

Y -periodic function: if a(y + k) = a(y) ∀ y ∈ RN ∀ k ∈ ZN .

Let a be a Y -periodic function, then

aε(x) = a
(x
ε

)
≡ a

(x1

ε
, . . . ,

xN
ε

)
, x ∈ Ω

is a sequence {aε | ε ∈ E} of Y ε-periodic functions on Ω with
diminishing period ε.
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Homogenization – formulation of the problem

For ε ∈ E and a Y -periodic matrix function a : Ω→ RN×N we
obtain a ε-periodic functions aεij and problem with ε-periodic
coefficients:

Problem (P[aε]) Find a function uaε ∈W 1,2
0 (Ω) satisfying

aaε(uaε , v) ≡
∫

Ω

N∑
i ,j=1

aij

(x
ε

) ∂uaε
∂xj

∂v

∂xi
dx =

∫
Ω
f vdx ∀ v ∈W 1,2

0 (Ω).

The problem (P[aε]) admits unique solution uaε .
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Homogenization – results

Taking a scale E = {ε} we obtain a sequence {uaε}. The sequence
is bounded in W 1,2(Ω).

I The well known result:

uaε → uba weakly in W 1,2(Ω)

I uba is a solution to the same type problem but with the
so-called homogenized coefficients – matrix of constant
function ba:

Problem (P[ba]) Find a function uba ∈W 1,2
0 (Ω) satisfying

aba(uba , v) ≡
∫

Ω

N∑
i ,j=1

baij
∂uba

∂xj

∂v

∂xi
dx =

∫
Ω
fvdx . ∀ v ∈W 1,2

0 (Ω).
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Homogenized coefficients

I The homogenized coefficients ba are given by

baij =

∫
Y

[
aij(y) +

N∑
k=1

aik(y)
∂wk

a

∂yj
(y)

]
dy ,

where wk
a are Y -periodic solutions to

Problem (Pper[a]) Find wa = (w1
a , . . . ,w

N
a ), wk

a ∈W 1,2
per (Y ):

∫
Y

 N∑
i ,j=1

aij(y)
∂wk

a

∂yj

∂ϕ

∂yi
+

N∑
i=1

aik(y)
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Uncertain data

I Two component composite material is considered:
Y = Y1 ∪ Y0 – reinforcing fibres and matrix.

I

aij(y) =

{
p1
ij for y ∈ Y1,

p0
ij for y ∈ Y0

I The set of all such functions aij(y) with
p1
ij ∈ I 1

ij and p0
ij ∈ I 0

ij

assumed, that it is a subset of E(α,M)
will be the set of admissible functions U ad.

I By its construction it is a bounded closed subset in L∞per(Y )

I U ad is finite dimensional – it is compact



Criterion functional

How to choose the functional Φ evaluating dangerous situations?

I Functions from W 1,2(Ω) need not be continuous

I Choose small Ω∗ of Ω which covers the critical place and put
the integral mean of over it.

I In homogenization the values of the homogenized solution uba

are tested:

Φ(a) =
1

|Ω∗|

∫
Ω∗

uba(x)dx ,

I Another possibility is to test gradient of the homogenized
solution uba .
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Main result

Theorem. The functional Φ on U ad attains its maximum.

Idea of the proof.

I Take a maximizing sequence an.

I Due to compactness of U ad there is a subsequence an′

converging to a∗

I Due to continuity based on estimates limn′→∞Φ(an′) = Φ(a∗)

I a∗ yields the maximum value on U ad
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Estimates

∣∣Φ(a)− Φ(a′)
∣∣ ≤ const. ‖uba − uba′‖W 1,2(Ω),

‖uba − uba′‖W 1,2(Ω) ≤ const. max
i ,j

∣∣∣baij − ba
′

ij

∣∣∣ ,
max
i ,j

∣∣∣baij − ba
′

ij

∣∣∣ ≤ const. ‖wa − wa′‖W 1,2
per (Y ,RN)

, ]

‖wa − wa′‖W 1,2
per (Y )

≤ const. ‖a− a′‖L∞(Y ,RN×N).
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Generalizations

I Problems with strongly monotone operator

I Evolution problems

I uncertainty in geometry

I . . . . . .






