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Abstract. An MV-pair is a pair (B,G) where B is a Boolean
algebra and G is a subgroup of the automorphism group of B sat-
isfying certain conditions. Let ∼G be the equivalence relation on
B naturally associated with G. We prove that for every MV-pair
(B,G), the effect algebra B/ ∼G is an MV-effect algebra. More-
over, for every MV-effect algebra M there is an MV-pair (B,G)
such that M is isomorphic to B/ ∼G.

1. Introduction

Let D be a bounded distributive lattice. Recall, that a Boolean
algebra B(D) is called R-generated by D iff D is a 0, 1-sublattice of
B(D) and D generates B(D), as a Boolean algebra. Given D, these
properties determine B(D) up to isomorphism.

In [12], it was proved that for every MV-effect algebra M there is
a surjective morphism of effect algebras φM : B(M) → M . Since φM

is a full morphism of effect algebras, B/ ∼φM
is isomorphic to M . A

natural question arises: is it possible to express φM in terms of B(M),
using only the language of Boolean algebras? In this paper, we answer
this question in the affirmative. We prove that for every MV-algebra
M there exists a subgroup G(M) of the automorphism group of B(M)
such that the standard equivalence relation on B(M) associated with
G(M) equals ∼φM

. Conversely, we give conditions under which a pair
(B,G) gives rise to an MV-effect algebra in aforementioned way; we
call such pairs (B,G) MV-pairs. Finally, we prove that (B(M), G(M))
is an MV-pair.

The origins of the main idea of this paper lie in the paper [5].
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2. Definitions and basic relationships

An effect algebra is a partial algebra (E;⊕, 0, 1) with a binary partial
operation ⊕ and two nullary operations 0, 1 satisfying the following
conditions.

(E1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.
(E2) If a⊕ b and (a⊕ b)⊕ c are defined, then b⊕ c and a⊕ (b⊕ c)

are defined and (a⊕ b)⊕ c = a⊕ (b⊕ c).
(E3) For every a ∈ E there is a unique a′ ∈ E such that a⊕ a′ = 1.
(E4) If a⊕ 1 exists, then a = 0

Effect algebras were introduced by Foulis and Bennett in their paper
[7]. In their papers [14] and [15], Kôpka and Chovanec introduced
an essentially equivalent structure called D-poset. Another equivalent
structure, called weak orthoalgebras was introduced by Giuntini and
Greuling in [8]. We refer to the monograph [6] for more information on
effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra (E;⊕, 0, 1) by E. In an
effect algebra E, we write a ≤ b iff there is c ∈ E such that a⊕ c = b.
It is easy to check that every effect algebra is cancellative, thus ≤ is
a partial order on E. In this partial order, 0 is the least and 1 is
the greatest element of E. Moreover, it is possible to introduce a new
partial operation 	; b	 a is defined iff a ≤ b and then a⊕ (b	 a) = b.
It can be proved that a⊕ b is defined iff a ≤ b′ iff b ≤ a′. Therefore, we
denote the domain of ⊕ by ⊥.

Let E1, E2 be effect algebras. A mapping φ : E1 7→ E2 is called
a morphism of effect algebras iff φ(1) = 1 and for all a, b ∈ E, the
existence of a ⊕ b implies the existence of φ(a) ⊕ φ(b) and φ(a ⊕ b) =
φ(a)⊕ φ(b). A morphism φ : E1 → E2 is full iff whenever φ(a) ⊥ φ(b)
and φ(a) ⊕ φ(b) ∈ φ(E1), then there are a1, b1 ∈ E1 such that φ(a) =
φ(a1), φ(b) = φ(b1) and a1 ⊥ b1. A morphism φ is an isomorphism iff
φ is bijective and full. Note that even if both E1 and E2 are lattice
ordered, a morphism of effect algebras need not to preserve joins and
meets.

An MV-algebra (c.f. [2], [18]) is a (2, 1, 0)-type algebra (M ; �,¬, 0),
such that � satisfying the identities (x�y)�z = x�(y�z), x�z = y�x,
x� 0 = x, ¬¬x = x, x� ¬0 = ¬0 and

x� ¬(x� ¬y) = y � ¬(y � ¬x).

On every MV-algebra, a partial order ≤ is defined by the rule

x ≤ y ⇐⇒ y = x� ¬(x� ¬y).
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In this partial order, every MV-algebra is a distributive lattice bounded
by 0 and ¬0.

An MV-effect algebra is a lattice ordered effect algebra M in which,
for all a, b ∈M , (a∨ b)	a = b	 (a∧ b). It is proved in [4] that there is
a natural, one-to one correspondence between MV-effect algebras and
MV-algebras given by the following rules. Let (M,⊕, 0, 1) be an MV-
effect algebra. Let � be a total operation given by x�y = x⊕ (x′∧y).
Then (M,�,′ , 0) is an MV-algebra. Similarly, let (M,�,¬, 0) be an
MV-algebra. Restrict the operation � to the pairs (x, y) satisfying
x ≤ y′ and call the new partial operation ⊕. Then (M,⊕, 0,¬0) is an
MV-effect algebra.

Among lattice ordered effect algebras, MV-effect algebras can be
characterized in a variety of ways. Three of them are given in the
following proposition.

Proposition 2.1. [1], [4] Let E be a lattice ordered effect algebra. The
following are equivalent

(a) E is an MV-effect algebra.
(b) For all a, b ∈ E, a ∧ b = 0 implies a ≤ b′.
(c) For all a, b ∈ E, a	 (a ∧ b) ≤ b′.
(d) For all a, b ∈ E, there exist a1, b1, c ∈ E such that a1 ⊕ b1 ⊕ c

exists, a1 ⊕ c = a and b1 ⊕ c = b.

Notation. In what follows, we will deal with an MV-effect algebra M
and a Boolean algebra B(M) such that M is a 0,1-sublattice of B(M).
In this particular situation, a small notational problem arises: both
M and B(M) are MV-effect algebras, but the ⊕,	 and ′ operations
on B(M) and M differ. To avoid confusion, we denote the partial
operation of disjoint join (the ⊕ of Boolean algebras) on a Boolean
algebra by ∨̇. The partial difference of comparable elements and the
complement in a Boolean algebra are denoted by \ and {, respectively.

Let D be a bounded distributive lattice. Up to isomorphism, there
exists a unique Boolean algebra B(D) such that D is a 0, 1-sublattice
of B(D) and B generates B(D) as a Boolean algebra. This Boolean
algebra is called the Boolean algebra R-generated by D. We refer to [9],
section II.4, for an overview of results concerning R-generated Boolean
algebras. See also [11] and [17]. For every element x of B(D), there
exists a finite chain x1 ≤ . . . ≤ xn in D such that x = x1 + . . . + xn.
Here, + denotes the symmetric difference, as in Boolean rings. We
then say than {xi}n

i=1 is a D-chain representation of x. It is easy to
see that every element of B(D) has a D-chain representation of even
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length. Note that, for n = 2k we have

x = x1 + · · ·+ x2k = (x2k \ x2k−1)∨̇ . . . ∨̇(x2 \ x1).

If D1, D2 are bounded distributive lattices and ψ : D1 → D2 is a 0, 1-
lattice homomorphism, then ψ uniquely extends to a homomorphism
of Boolean algebras ψ∗ : B(D1) → B(D2). Similarly, if [0, a]D is an
interval in a bounded distributive lattice D, then B([0, a]D) is naturally
isomorphic to the interval [0, a]B(D).

Theorem 2.2. [12] Let M be an MV-effect algebra. The mapping
φM : B(M) →M given by

φM(x) =
n⊕

i=1

(x2i 	 x2i−1),

where {xi}2n
i=1 is a M-chain representation of x, is a surjective mor-

phism of effect algebras.

We note that the value of φM(x) does not depend on the choice of
the M -chain representation of x. Obviously, for all x ∈ M , {x, 0} is a
M -chain representation of x. Therefore, φM(x) = x 	 0 = x, so every
x ∈M is a fixpoint of φM .

Example 2.3. Let M be an MV-effect algebra, which is totally or-
dered. By [9], Corollary II.4.19, B(M) is isomorphic to the Boolean
algebra of all subsets of M of the form [a1, b1)∪̇ . . . ∪̇[an, bn). Here, we
denote [a, b) = {x ∈M : a ≤ x < b}. The φM : B(M) →M morphism
is then given by

φM([a1, b1)∪̇ . . . ∪̇[an, bn)) = (b1 	 a1)⊕ . . .⊕ (bn 	 an).

Example 2.4. In this example, [0, 1] denotes the closed real unit inter-
val. Let C[0,1] be the MV-effect algebra of all real continuous functions
f : [0, 1] → [0, 1]. Let B be the Boolean algebra∏

x∈[0,1]

B([0, 1]),

where B([0, 1]) is the Boolean algebra generated by semiopen intervals
as described in Example 2.3. It is obvious that C[0,1], as a bounded
lattice, can be embedded into B by a mapping γ : E → B given by
γ(f) =

([
0, f(x)

))
x∈[0,1]

. The image of E under γ then generates a

Boolean subalgebra of B, which we can identify with B(C[0,1]). The
φC[0,1]

: B(C[0,1]) → C[0,1] mapping can then be constructed as follows.

Let (Ax)x∈[0,1] ∈ B(C[0,1]). Fix x ∈ [0, 1] and writeAx = [a1, b1)∪̇ . . . ∪̇[an, bn).
The value of the continuous function φC[0,1]

((Ax)x∈[0,1]) at x is then equal

to (b1 	 a1)⊕ . . .⊕ (bn 	 an).
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Let E be an effect algebra. A relation ∼ on E is a weak congruence
iff the following conditions are satisfied.

(C1) ∼ is an equivalence relation.
(C2) If a1 ∼ a2, b1 ∼ b2 and a1⊕b1, a2⊕b2 exist, then a1⊕b1 ∼ a2⊕b2.
If E is an effect algebra and ∼ is a weak congruence on E, the

quotient E/ ∼ (⊕ is defined on E/ ∼ in an obvious way) need not to
be a partial abelian monoid, since the associativity condition may fail
(c.f. [10]). This fact motivates the study of sufficient conditions for a
weak congruence to preserve associativity. The following condition was
considered in [3].

(C5) If a ∼ b⊕c, then there are b1, c1 such that b1 ∼ b, c1 ∼ c, b1⊕c1
exists and a = b1 ⊕ c1.

In [3], it was proved that for a partial abelian monoid P and a
weak congruence ∼, satisfying (C5), the quotient P/ ∼ is again a
partial abelian monoid. Moreover, it is easy to prove that the eventual
positivity of P is preserved for such ∼. However, for an effect algebra
E, the (C5) property of ∼ does not guarantee that the ′ operation is
preserved by ∼. If ′ is preserved by ∼, that means, if condition

(C6) If a ∼ b, then a′ ∼ b′.

is satisfied, then E/ ∼ is an effect algebra. A relation on an effect
algebra satisfying (C1),(C2),(C5),(C6) is called an effect algebra con-
gruence. For every effect algebra congruence ∼ on an effect algebra E,
the mapping a→ [a]∼ is a full morphism of effect algebras.

We refer the interested reader to [19] and [10] for further details
concerning congruences on effect algebras and partial abelian monoids.

The (b) and (c) of the following lemma are just two equivalent ⊥-
to-≤ reformulations of the (C3) property from [10]. Thus, the lemma
is (implicitly) well known, but we cannot find it in print.

Lemma 2.5. Let ∼ be a congruence on an effect algebra E. For all
x, y ∈ E, the following are equivalent.

(a) [x]∼ ≤ [y]∼.
(b) There is x1 ∼ x such that x1 ≤ y.
(c) There is y1 ∼ y such that x ≤ y1.

Proof.
(b) =⇒ (a) and (c) =⇒ (a) are trivial.
(a) =⇒ (b): As [x]∼ ≤ [y]∼, there is u ∈ E such that [x]∼ ⊕ [u]∼ =

[y]∼. This implies that there are x0, u0 ∈ E such that x0 ∼ x, u0 ∼ u,
x0 ⊕ u0 exists, and x0 ⊕ u0 ∼ y. By the (C5) property, there are x1, u1

such that x1 ∼ x0, u1 ∼ u0, x1 ⊕ u1 exists, and x1 ⊕ u1 = y.
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(a) =⇒ (c): By the (C6) property, [y′]∼ ≤ [x′]∼. As (a) =⇒ (b),
there is z ∼ y′ such that z ≤ x′ and this is equivalent with x ≤ z′. By
the (C6) property, z ∼ y′ iff z′ ∼ y and we can put y1 = z′. �

Recall that an effect algebra E satisfies the Riesz decomposition prop-
erty iff for all u, v1, v2 ∈ E, u ≤ v1 ⊕ v2 iff there are u1, u2 such that
u1 ≤ v1, u2 ≤ v2 and u = u1 ⊕ u2. A lattice ordered effect algebra is
an MV-effect algebra iff it satisfies the Riesz decomposition property.
There are non-lattice ordered effect algebras satisfying the Riesz de-
composition property, for example the effect algebra of all polynomial
functions [0, 1]R → [0, 1]R. By [20], every effect algebra satisfying the
Riesz decomposition property can be embedded, as an interval in the
positive cone, into a partially ordered abelian group satisfying the Riesz
decomposition property. This result is a generalization of the famous
result by Mundici from [18].

An effect algebra satisfies the Riesz interpolation property iff for all
elements u1, u2, v1, v2 such that ui ≤ vj for all i, j ∈ {1, 2}, there is an
element x such that x is an upper bound of u1, u2 and a lower bound of
v1, v2. If an effect algebra satisfies the Riesz decomposition property,
then it satisfies the Riesz interpolation property. The opposite impli-
cation is not true, since every lattice ordered effect algebra satisfies the
Riesz interpolation property, but there exist (obviously) some effect
algebras that are lattice ordered and non-MV.

3. From MV-pairs to MV-effect algebras

Let B be a Boolean algebra. We write Aut(B) for the group of all
automorphisms of B. Let G be a subgroup of Aut(B). For a, b ∈ B,
we write a ∼G b iff there exists f ∈ G such that b = f(a). Obviously,
∼G is an equivalence relation. We write [a]G for the equivalence class
of an element a of B.

A pair (B,G), where B is a Boolean algebra and G is a subgroup
of Aut(B) is called a BG-pair. BG-pairs are a well-established topic
in the theory of Boolean algebras, see for example Chapter 15 of the
handbook [16].

Let (P,≤) be a poset. Let us write,

max(P ) = {m ∈ P : x ≥ m =⇒ x = m},

that means, max(P ) is the set of all maximal elements of the poset P .
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Let B be a Boolean algebra, let G be a subgroup of Aut(B). For all
a, b ∈ B, we write

L(a, b) = {a ∧ f(b) : f ∈ G} and

L+(a, b) = {g(a) ∧ f(b) : f, g ∈ G}.
Note that L(a, b) ⊆ L+(a, b) and that L+(a, b) is closed with respect to
any h ∈ G; this implies that L+(a, b) is a union of equivalence classes
of ∼G.

Definition 3.1. Let B be a Boolean algebra, let G be a subgroup
of Aut(B). We say that (B,G) is an MV-pair iff the following two
conditions are satisfied.

(MVP1) For all a, b ∈ B, f ∈ G such that a ≤ b and f(a) ≤ b, there is
h ∈ G such that h(a) = f(a) and h(b) = b.

(MVP2) For all a, b ∈ B and x ∈ L(a, b), there exists m ∈ max(L(a, b))
with m ≥ x.

Example 3.2. For every finite Boolean algebra B, (B,Aut(B)) is an
MV-pair.

Example 3.3. Let B be a Boolean algebra with three atoms a1, a2, a3.
The mapping f given by

x 0 a1 a2 a3 a{
1 a{

2 a{
3 1

f(x) 0 a2 a3 a1 a{
2 a{

3 a{
1 1

is an automorphism of B and G = {id, f, f 2} is a subgroup of Aut(B).
However, (B,G) is not an MV-pair. Indeed, we have a1 ≤ a{

3 and
f(a1) = a2 ≤ a{

3, but there is no h ∈ G such that h(a1) = f(a1) and
h(a{

3) = a{
3.

Example 3.4. Let B be the Boolean algebra of all Borel subsets of the
real unit interval [0, 1]R that are unions of a finite number of intervals.
(as usual, we identify the Borel sets that differ by a set of measure
0.) Let W be the subgroup of the permutation group of [0, 1]R that is
generated by the set of all bijections pa,b given by

pa,b(x) =


x if x ∈ [0, a],

a+ b− x if x ∈ (a, b),

x if x ∈ [b, 1],

where 0 ≤ a ≤ b ≤ 1. For every p ∈ W , let fp be the mapping
fp : B → B given by fp(X) = p(X) and let G = {fp : p ∈ W}.
Obviously, G is a subgroup of Aut(B). Then (B,G) is an MV-pair; the
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proof of this fact is a bit longer, but straightforward. Note that every
fp ∈ G preserves measure.

Example 3.5. Let 2Z be the Boolean algebra of all subsets of Z. Then
(2Z,Aut(2Z)) is not an MV-pair. Indeed, let f ∈ Aut(2Z) be the au-
tomorphism of 2Z associated with the permutation f(n) = n + 1. Let
A = B = N. We see that f(A) = A\{0}, A ⊆ B and f(A) ⊆ B. How-
ever, there is no h ∈ Aut(2Z) such that h(A) = f(A) and h(B) = B,
simply because A = B implies that h(A) = h(B), but f(A) 6= B.

The (MVP1) condition can be reformulated:

Lemma 3.6. Let B be a Boolean algebra, let G be a subgroup of
Aut(B). Then the following conditions are equivalent.

(a) (MVP1)
(b) For all a, b ∈ B, f ∈ G such that a ≤ b and a ≤ f(b), there is

h ∈ G such that h(b) = f(b) and h(a) = a.
(c) For all a, b ∈ B, f ∈ G such that a ∧ b = 0 and a ∧ f(b) = 0,

there is h ∈ G such that h(b) = f(b) and h(a) = a.
Proof.

(a) =⇒ (b): Replace a with b{ and b with a{ and apply the fact that
f is an automorphism.

(b) =⇒ (c): Replace b with b{.
(c) =⇒ (a): Replace b with a and a with b{. �

Lemma 3.7. Let (B,G) be an MV-pair, let a, b ∈ B and let m be a
maximal element of L(a, b). For all f ∈ G, f(m) is a maximal element
of L+(a, b).

Proof. Suppose that there is some element in y ∈ L+(a, b) with y ≥
f(m) and write y = g1(a) ∧ f1(b), where g1, f1 ∈ G. Since m ∈ L(a, b),
a ≥ m and since

a∧g−1
1

(
f1(b)

)
= g−1

1

(
g1(a)∧f1(b)

)
= g−1

1 (y) ≥ g−1
1

(
f(m)

)
= (g−1

1 ◦f)(m),

we see that a ≥ (g−1
1 ◦ f)(m).

By (MVP1), a ≥ (g−1
1 ◦ f)(m) and a ≥ m imply that there exists

h ∈ G such that h(a) = a and h(m) = (g−1
1 ◦ f)(m). We apply h−1 to

both sides of the inequality

a ∧ g−1
1

(
f1(b)

)
≥ (g−1

1 ◦ f)(m),

to obtain

h−1
(
a ∧ g−1

1

(
f1(b)

))
= a ∧ h−1

(
g−1
1

(
f1(b)

))
≥ h−1

(
(g−1

1 ◦ f)(m)
)
= m
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Since m is a maximal element of L(a, b), a ∧ h−1
(
g−1
1

(
f1(b)

))
≥ m

implies that a ∧ h−1
(
g−1
1

(
f1(b)

))
= m. After we apply the mapping

g1 ◦h on both sides of the latter equality we obtain y = g1(a)∧ f1(b) =
f(m). Thus, f(m) is maximal in L+(a, b). �

Note that Lemma 3.7 implies that max(L(a, b)) ⊆ max(L+(a, b)).

Corollary 3.8. Let (B,G) be an MV-pair. For all a, b ∈ B and x ∈
L+(a, b), there exists m ∈ max(L+(a, b)) with m ≥ x.

Proof. As x ∈ L+(a, b), we have x = g1(a) ∧ f1(b) for some f1, g1 ∈ G.
Then

g−1
1

(
g1(a) ∧ f1(b)

)
= a ∧ g−1

1

(
a1(b)

)
∈ L(a, b).

By (MVP2), there is m ∈ max(L(a, b)) with m ≥ a ∧ g−1
1

(
a1(b)

)
.

This implies that g1(m) ≥ g1(a) ∧ f1(b). By Lemma 3.7, g1(m) ∈
max(L+(a, b)). �

Theorem 3.9. Let (B,G) be an MV-pair. Then ∼G is an effect algebra
congruence on B and B/ ∼G is an MV-effect algebra.

Proof. We shall prove that the equivalence ∼G is an effect congruence.
It is easy to see that ∼G preserves the { operation, so (C6) is satisfied.
To prove (C5), let a1, a2 ∈ B be such that a1∨̇a2 exists and a1∨̇a2 ∼G b.
Then there is f ∈ G such that f(a1∨̇a2) = b and we may put b1 = f(a1)
and b2 = f(a2).

Let us prove (C2). Let a1, a2, b1, b2 ∈ B be such that a1 ∼G a2,
b1 ∼G b2, and a1∨̇b1, a2∨̇b2 exist. There are fa, fb ∈ G such that
fa(a1) = a2 and fb(b1) = b2.

We see that b{2 ≥ a2 and that implies

b{1 = f−1
b (b{2) ≥ f−1

b (a2) = f−1
b

(
fa(a1)

)
= (f−1

b ◦ fa)(a1).

By (MVP1), a1 ≤ b{1 and (f−1
b ◦ fa)(a1) ≤ b{1 imply that there is h ∈ G

such that h(a1) = (f−1
b ◦ fa)(a1) and h(b{1) = b{1. Therefore,

fb

(
h(a1∨̇b1)

)
= fb

(
h(a1)∨̇h(b1)

)
= fb

(
(f−1

b ◦fa)(a1)∨̇b1
)

= fa(a1)∨̇fb(b1) = a2∨̇b2,

and a1∨̇b1 ∼G a2∨̇b2.
Since ∼G is an effect congruence, B/ ∼G is an effect algebra. By

Proposition 4.3 of [13], since B satisfies the Riesz decomposition prop-
erty, B/ ∼G satisfies the Riesz decomposition property as well. It
remains to prove that B/ ∼G is a lattice. Since an effect algebra is a
lattice iff it is a (join or meet) semilattice, it suffices to prove that for
all a, b ∈ B, [a]G ∧ [b]G exists in B/ ∼G.
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Let a, b ∈ B. We shall prove that every common lower bound of
[a]G, [b]G is below a maximal common lower bound of [a]G, [b]G.

If [c]G ≤ [a]G, [b]G then, by Lemma 2.5, there is c1 ∼G c such that
c1 ≤ a and, again by Lemma 2.5, b1 ∼G b such that c1 ≤ b. As b1 ∼G b,
there is f ∈ G such that b1 = f(b). Thus,

c ∼G c1 ≤ a ∧ f(b) ∈ L(a, b).

By (MVP2), there is m ∈ max(L(a, b)) with a ∧ f(b) ≤ m. Obvi-
ously, m ∈ L(a, b) implies that [m]G ≤ [a]G, [b]G. Therefore, for every
common lower bound [c]G of [a]G, [b]G, there is m ∈ max(L(a, b)) such
that

[c]G ≤ [m]G ≤ [a]G, [b]G.

Let us prove that [m]G is a maximal common lower bound of [a]G, [b]G
in B/ ∼G. Suppose that

[m]G ≤ [x]G ≤ [a]G, [b]G.

By Lemma 2.5, there are m1 ∼G m, x1 ∼G x and b1 ∼G b such that

m1 ≤ x1 ≤ a, b1.

There is f ∈ G such that b1 = f(b). We see that x1 ≤ a ∧ f(b) ∈
L(a, b) ⊆ L+(a, b). There is g ∈ G such that m1 = g(m). By Lemma
3.7, m1 = g(m) is maximal element of L+(a, b). Therefore, m1 =
a ∧ f(b) and hence x1 = m1. This implies that [m]G = [x]G.

Let [m1]G, [m2]G be maximal common lower bounds of [a]G, [b]G.
Since B/ ∼G satisfies the Riesz decomposition property, B/ ∼G satis-
fies the Riesz interpolation property. By the Riesz interpolation prop-
erty, there is [m]G such that [m1]G, [m2]G ≤ [m]G ≤ [a]G, [b]G. Since
[m1]G, [m2]G are maximal, [m1]G = [m]G = [m2]G. Since every common
lower bound of [a]G, [b]G is below a maximal one, and there is a single
maximal common lower bound of [a]G, [b]G, [a]G ∧ [b]G exists.

Note that we have proved that [a]G ∧ [b]G = L+(a, b). In particular,
L+(a, b) is a single equivalence class of ∼G. �

In what follows we shall denote the MV-effect algebra arising from
an MV-pair (B,G) in the way indicated above by A(B,G).

4. From MV-effect algebras to MV-pairs

We have proved that for every MV-pair (B,G) there is an MV-effect
algebra A(B,G) arising from it. In this section, we shall prove that for
every MV-effect algebra there is a MV-pair (B,G) such thatA(B,G) '
M .
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Let M be an MV-effect algebra. Let S be a subset of B(M). We
say that a mapping f : S → B(M) is φM -preserving iff, for all x ∈ S,
φM(x) = φM(f(x)) or, in other words, φM restricted to S equals φM ◦f .

Theorem 4.1. Let M be an MV-effect algebra. Let G(M) be the set
of all φM -preserving automorphisms of B(M). Then (B(M), G(M)) is
an MV-pair and A(B(M), G(M)) is isomorphic to M .

We have divided the proof into a sequence of lemmas. In this section,
M is an MV-effect algebra and G(M) is the subgroup of Aut(B(M))
described in Theorem 4.1.

Lemma 4.2. Let c, d ∈ M , d ≤ c. There is a φM -preserving isomor-
phism

ψ : B([0, c	 d]M) → [0, c \ d]B(M)

Proof. Consider the mapping ψ0 : [0, c	 d]M → [0, c \ d]B(M), given by
ψ0(x) = (x ⊕ d) \ d. We see that ψ0(0) = 0, ψ0(c 	 d) = c \ d and,
since ψ0 is just a composition of a translation in M and a translation
in B(M), ψ0 preserves joins and meets. Moreover, it is easy to see
that ψ0 is injective, hence ψ0 is a 0, 1-lattice embedding of [0, c 	 d]M
into [0, c \ d]B(M). We shall prove that the range of ψ0 R-generates
the Boolean algebra [0, c \ d]B(M). ψ0 then uniquely extends to an
isomorphism ψ : B([0, c	 d]M) → [0, c \ d]B(M).

Let x ∈ [0, c\d]B(M). Let {xi}2n
i=1 be an M -chain representation of x.

For all 1 ≤ i ≤ n, x2i \ x2i−1 ≤ c \ d. By elementary Boolean calculus,
this implies that

x2i \ x2i−1 =
(
(x2i ∨ d) ∧ c

)
\

(
(x2i−1 ∨ d) ∧ c

)
.

For all 1 ≤ j ≤ 2n, (xj ∨ d) ∧ c ∈ [d, c] Therefore, x has a M -chain
representation {yj}2n

j=1 ⊆ [d, c]M . Since, for all 1 ≤ i ≤ n,

y2i \ y2i−1 = (y2i \ d) \ (y2i−1 \ d),
{yi \ d}2n

i=1 is a chain representation of x. It remains to observe that,
for all 1 ≤ i ≤ 2n,

yi \ d =
(
(yi 	 d)⊕ d

)
\ d = φ0(yi 	 d)

and that yi 	 d ∈ [0, c	 d]M . Thus, every element of [0, c \ d]B(M) has
a ψ0([0, c	 d]M)-chain representation.

Let us prove that ψ is a φM -preserving mapping. Let z ∈ B([0, c 	
d]M), let {zi}2n

i=1 be a [0, c	 d]M -chain representation of z. Then

φM

(
ψ(z)

)
= φM

(
ψ(∨̇n

i=1(z2i \ z2i−1))
)

=

= φM

(
∨̇n

i=1ψ(z2i \ z2i−1)
)

=
n⊕

i=1

φM

(
ψ(z2i \ z2i−1)

)
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and, for all 1 ≤ i ≤ n,

φM

(
ψ(z2i \ z2i−1)

)
= φM

(
ψ(z2i) \ ψ(z2i−1)

)
=

= φM

(
((z2i ⊕ d) \ d) \ ((z2i ⊕ d) \ d)

)
=

= φM

(
(z2i ⊕ d) \ (z2i ⊕ d)

)
= φM(z2i ⊕ d)	 φM(z2i ⊕ d) =

= (z2i ⊕ d)	 (z2i−1 ⊕ d) = z2i 	 z2i−1 = φM(z2i \ z2i−1).

so we obtain

φM(ψ(z)) =
n⊕

i=1

φM

(
ψ(z2i \ z2i−1)

)
=

n⊕
i=1

φM(z2i \ z2i−1) = φM(z).

�

Corollary 4.3. Let c1, d1, c2, d2 ∈ M be such that c1 ≥ d1, c2 ≥ d2

and c1 	 d1 = c2 	 d2. There is a φM -preserving isomorphism ψ :
[0, c1 \ d1]B(M) → [0, c2 \ d2]B(M).

Proof. Use Lemma 4.2 twice. �

Lemma 4.4. For every a ∈ B(M), there is a φM -preserving isomor-
phism of Boolean algebras ψ : B([0, φM(a)]M) → [0, a]B(M).

Proof. Let {ai}2n
i=1 be an M -chain representation of a. Then {a2i \

a2i−1}n
i=1 is a decomposition of unit in the Boolean algebra [0, a]B(M)

and φM(a) =
⊕n

i=1(a2i	a2i−1. For j ∈ {0, . . . , n}, write bj =
⊕j

i=1(a2i	
a2i−1). Then {bj}n

j=0 is a finite chain in [0, φM(a)]M with b0 = 0
and bn = φM(a). Thus, {bj \ bj−1}n

j=1 is a decomposition of unit in
the Boolean algebra B([0, φM(a)]M). For every x ∈ B([0, φM(a)]M),

x =
∨̇n

j=1x ∧ (bj \ bj−1). Since, for all j, bj 	 bj−1 = a2j 	 a2j−1, Corol-
lary 4.3 implies that, for all 1 ≤ i ≤ n, there is a a φM -preserving
isomorphism ψj : [0, bj \ bj−1]B(M) → [0, a2j \a2j−1]B(M). Define ψ(x) =∨̇n

i=1ψj(x ∧ (bj \ bj−1)).
The proof that ψ is a φM -preserving isomorphism of Boolean algebras

is trivial and thus omitted.
�

Corollary 4.5. Let a, b ∈ B(M) be such that φM(a) = φM(b). Then
there is a φM -preserving isomorphism ψ : [0, a]B(M) → [0, b]B(M).

Proof. Use Lemma 4.4 twice. �

Lemma 4.6. Let u, v ∈ B(M), u ∧ v = 0, φM(u) = φM(v). Then
there is a φM -preserving automorphism f of B(M) such that f(u) = v,
f(v) = u and for all x ≤ (u∨̇v){, f(x) = x.
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Proof. By Corollary 4.5, there is an isomorphism ψ : [0, u]B(M) →
[0, v]B(M). Let f : B(M) → B(M) be a mapping given by

f(x) = ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇(x ∧ (u∨̇v){).

It is easy to check that, for all x ∈ B(M), f(f(x)) = x. Thus, f
is a bijection. Moreover, we see that f(0) = 0, f(1) = 1 and, for all
x, y ∈ B(M),

f(x ∨ y) = ψ−1
(
(x ∨ y) ∧ v

)
∨̇ψ

(
(x ∨ y) ∧ u

)
∨̇

(
(x ∨ y) ∧ (u∨̇v){

)
=

= ψ−1
(
(x ∧ v) ∨ (y ∧ v)

)
∨̇ψ

(
(x ∧ u) ∨ (y ∧ u)

)
∨̇

((
x ∧ (u∨̇v){

)
∨

∨
(
y ∧ (u∨̇v){

))
=

=
(
ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇(x ∧ (u∨̇v){)

)
∨

∨
(
ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇(x ∧ (u∨̇v){)

)
=

= f(x) ∨ f(y)

and

f(x{) = ψ−1(x{ ∧ v)∨̇ψ(x{ ∧ u)∨̇
(
x{ ∧ (u∨̇v){

)
=

= ψ−1
(
v \ (x ∧ v)

)
∨̇ψ

(
u \ (x ∧ u)

)
∨̇

(
x{ ∧ (u∨̇v){

)
=

=
(
u \ ψ−1(x ∧ v)

)
∨̇

(
v \ ψ(x ∧ u)

)
∨̇

(
x{ ∧ (u∨̇v){

)
=

=
(
ψ−1(x ∧ v)∨̇ψ(x ∧ u)∨̇

(
x ∧ (u∨̇v)

)){

The latter equality follows by elementary Boolean calculus. Since f
preserves 0, 1,∨ and {, it is a homomorphism of Boolean algebras. �

Lemma 4.7. Let u, v ∈ B(M), φM(u) = φM(v). Then there is a φM -
preserving automorphism f of B(M) such that f(u) = v, f(v) = u and
for all x ≤ (u∨̇v){, f(x) = x.

Proof. Put u0 = u \ u ∧ v and v0 = v \ u ∧ v. Since

φM(u0)⊕ φM(u ∧ v) = φM(u) = φM(v) = φM(v0)⊕ φM(u ∧ v),
φM(u0) = φM(v0). By Lemma 4.6, there is f ∈ G(M) such that
f(u0) = v0, f(v0) = u0 and for all x ∈ B such that x ≤ (u0∨̇v0)

{

we have f(x) = 0. Since u∧ v ≤ (u0∨̇v0)
{, f(u∧ v) = u∧ v. Therefore,

f(u) = f
(
u0∨̇(u ∧ v)

)
= f(u0)∨̇(u ∧ v) = v0∨̇(u ∧ v) = v

and, similarly, f(v) = u.
Let x ≤ (u ∨ v){. Since x ≤ (u0∨̇v0)

{, f(x) = x. �

Corollary 4.8. For all u, v ∈ B(M), u ∼G(M) v iff φM(u) = φM(v).
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Proof. One implication follows by the definition of G(M), the other
one follows by Lemma 4.7. �

Corollary 4.9. For all u ∈ B(M), u ∼G φM(u).

Proof. Put v = φM(u) in Corollary 4.8 �
Proof of Theorem 4.1.

(MVP1): Let a, b ∈ B(M), f ∈ G be such that a ≤ b, a ≤ f(b). Let
u = b \ (b ∧ f(b)), v = f(b) \ (b ∧ f(b)). We have

φM(u) = φM

(
b \ (b ∧ f(b))

)
= φM(b)	 φM(b ∧ f(b))) =

= φM(f(b))	 φM(b ∧ f(b))) = φM(f(b) \ (b ∧ f(b))) = φM(v).

By Lemma 4.6, there is a φM -preserving automorphism h of B(M)
with h(u) = v. Moreover, since a ∧ u = a ∧ v = 0 and (b ∧ f(b)) ∧ u =
(b ∧ f(b)) ∧ v = 0, we have h(a) = a and h(b ∧ f(b)) = b ∧ f(b). This
implies that

h(b) = h((b ∧ f(b))∨̇u) = h((b ∧ f(b)))∨̇h(u) = (b ∧ f(b))∨̇v = f(b).

Thus, there is h ∈ G such that h(a) = a and h(b) = f(b). By Lemma
3.6, this implies (MVP1).

(MVP2): Let a ∧ f(b) be an element of L(a, b). By Corollary 4.9,
there is f1 ∈ G such that f1(a) = φM(a). Since f1 is φM -preserving,
φM(f1(a∧f(b))) = φM(a∧f(b)). By Corollary 4.9, there is g ∈ G such
that g(f1(a ∧ f(b))) = φM(a ∧ f(b)). Since

f1(a ∧ f(b)) ≤ f1(a) = φM(a)

and
g(f1(a ∧ f(b))) = φM(a ∧ f(b)) ≤ φM(a),

(MVP1) implies that there is h ∈ G such that h(f1(a∧f(b))) = φM(a∧
f(b)) and h(φM(a)) = φM(a).

Put y = a ∧ f−1
1 (h−1(φM(f(b)))). We shall prove that y ≥ a ∧ f(b)

and that y is a maximal element of L(a, b).
Indeed, we have

h(f1(a)) = h(φM(a)) = φM(a),

therefore

h(f1(y)) = h
(
f1

(
a ∧ f−1

1 (h−1(φM(f(b))))
))

=

= h(f1(a)) ∧ h
(
f1

(
f−1

1 (h−1(φM(f(b))))
))

=

= φM(a) ∧ φM(f(b)) = φM(a) ∧ φM(b)

and

h(f1(a ∧ f(b))) = φM(a ∧ (f(b))) ≤ φM(a) ∧ φM(f(b)) = h(f1(y)).
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Since both h and f1 are automorphisms of B(M), the latter inequality
clearly implies that a ∧ f(b) ≤ y. Moreover, since h and f1 are φM -
preserving and φM restricted to M is the identity mapping, we obtain

φM(y) = φM(h(f1(y))) = φM(φM(a) ∧ φM(b)) = φM(a) ∧ φM(b).

Let us prove that y is maximal in L(a, b). Suppose that z ∈ L(a, b),
z ≥ y. Since z = a ∧ f2(b) for some f2 ∈ G, we see that

φM(z) = φM(a ∧ f2(b)) ≤ φM(a) ∧ φM(f2(b)) = φM(y).

This implies that φM(z) = φM(y). As φM(z \ y) = φM(z)	 φM(y) = 0
and φM is faithful, z \ y = 0 and hence z = y.

Let us prove that A(B(M), G(M)) is isomorphic to M . The isomor-
phism ψ : A(B(M), G(M)) →M is given by

ψ([a]G(M)) = φM(u).

By Corollary 4.8, ψ is well-defined and injective. Since, for all a ∈
M , ψ([a]G(M)) = a, ψ is surjective. Obviously, ψ([1]G(M)) = 1. Let
[a]G(M), [b]G(M) ∈ A(B(M), G(M)) be such that [a]G(M), [b]G(M). We
may always select the elements a, b ∈ B(M) so that a∨̇b exists, that
means, a ∧ b = 0. Since φM is a morphism of effect algebras, φM(a)⊕
φM(b) exists in M and we may compute

ψ([a]G(M) ⊕ [b]G(M)) = ψ([a∨̇b]G(M)) = φM(a∨̇b) =

= φM(a)⊕ φM(b) = ψ([a]G(M))⊕ ψ([b]G(M)),

hence ψ is a morphism of effect algebras. It remains to prove that ψ
is a full morphism. Suppose that ψ([a]G(M))⊕ ψ([b]G(M)) exists in M .

Consider the elements φM(a) and
(
φM(a)⊕ φM(b)

)
\ φM(a) of B(M).

We see that

φM(a) ∧
((
φM(a)⊕ φM(b)

)
\ φM(a)

)
= 0,

that means, φM(a)∨̇
(
(φM(a) ⊕ φM(b)

)
\ φM(a)) exists in B(M). This

implies that [φM(a)]G(M) ⊕ [(φM(a) ⊕ φM(b)) \ φM(a))]G(M) exists in
A(B(M), G(M)). Finally,

ψ([φM(a)]G(M)) = φM(φM(a)) = φM(a) = ψ([a]G(M))

and

ψ([
(
φM(a)⊕φM(b)

)
\φM(a)]G(M)) = φM

((
φM(a)⊕φM(b)

)
\φM(a)

)
=

= φM

(
φM(a)⊕ φM(b)

)
	 φM(φM(a)) =

(
φM(a)⊕ φM(b)

)
	 φM(a) =

= φM(b) = ψ([b]G(M)).

�



16 GEJZA JENČA
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