A REPRESENTATION THEOREM FOR
MV-ALGEBRAS

GEJZA JENCA

ABSTRACT. An MV-pair is a pair (B,G) where B is a Boolean
algebra and G is a subgroup of the automorphism group of B sat-
isfying certain conditions. Let ~¢g be the equivalence relation on
B naturally associated with G. We prove that for every MV-pair
(B, G), the effect algebra B/ ~¢ is an MV-effect algebra. More-
over, for every MV-effect algebra M there is an MV-pair (B, G)
such that M is isomorphic to B/ ~¢.

1. INTRODUCTION

Let D be a bounded distributive lattice. Recall, that a Boolean
algebra B(D) is called R-generated by D iff D is a 0, 1-sublattice of
B(D) and D generates B(D), as a Boolean algebra. Given D, these
properties determine B(D) up to isomorphism.

In [12], it was proved that for every MV-effect algebra M there is
a surjective morphism of effect algebras ¢y, : B(M) — M. Since ¢y
is a full morphism of effect algebras, B/ ~y,, is isomorphic to M. A
natural question arises: is it possible to express ¢, in terms of B(M),
using only the language of Boolean algebras? In this paper, we answer
this question in the affirmative. We prove that for every MV-algebra
M there exists a subgroup G(M) of the automorphism group of B(M)
such that the standard equivalence relation on B(M) associated with
G(M) equals ~g,,. Conversely, we give conditions under which a pair
(B, G) gives rise to an MV-effect algebra in aforementioned way; we
call such pairs (B, G) MV-pairs. Finally, we prove that (B(M),G(M))
is an MV-pair.

The origins of the main idea of this paper lie in the paper [5].
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2. DEFINITIONS AND BASIC RELATIONSHIPS

An effect algebra is a partial algebra (E; @, 0, 1) with a binary partial
operation @ and two nullary operations 0,1 satisfying the following
conditions.

(E1) If a ® b is defined, then b & a is defined and a b =0 a.

(E2) f a® b and (a ® b) & ¢ are defined, then b@® ¢ and a ® (b P ¢)
are defined and (a ®b) @c=a® (bDc).

(E3) For every a € E there is a unique ¢’ € F such that a ® o’ = 1.

(E4) If a © 1 exists, then a =0

Effect algebras were introduced by Foulis and Bennett in their paper
[7]. In their papers [14] and [15], Kopka and Chovanec introduced
an essentially equivalent structure called D-poset. Another equivalent
structure, called weak orthoalgebras was introduced by Giuntini and
Greuling in [8]. We refer to the monograph [6] for more information on
effect algebras and similar algebraic structures.

For brevity, we denote an effect algebra (E;,0,1) by E. In an
effect algebra F, we write a < b iff there is ¢ € E such that a & ¢ = b.
It is easy to check that every effect algebra is cancellative, thus < is
a partial order on F. In this partial order, 0 is the least and 1 is
the greatest element of E. Moreover, it is possible to introduce a new
partial operation ©; b & a is defined iff a < b and then a® (b a) = b.
It can be proved that a @ b is defined iff a < ¥/ iff b < /. Therefore, we
denote the domain of @ by L.

Let Ei, E5 be effect algebras. A mapping ¢ : F; — Fs is called
a morphism of effect algebras iff ¢(1) = 1 and for all a,b € E, the
existence of a @ b implies the existence of ¢(a) ® ¢(b) and ¢(a ® b) =
¢(a) ® ¢(b). A morphism ¢ : By — Ey is full iff whenever ¢(a) L ¢(b)
and ¢(a) ® ¢(b) € ¢(Ey), then there are aj,b; € E; such that ¢(a) =
o(ar), ¢(b) = ¢(by) and a; L b;. A morphism ¢ is an isomorphism iff
¢ is bijective and full. Note that even if both E; and FE, are lattice
ordered, a morphism of effect algebras need not to preserve joins and
meets.

An MV-algebra (c.f. 2], [18]) is a (2,1, 0)-type algebra (M;H, —,0),
such that H satisfying the identities (xHy)Hz = xB(yHz), 2Bz = yHz,
rHO=2, -—x =2, t H-0= -0 and

rH-(zB-y) =yH-(y B —x).
On every MV-algebra, a partial order < is defined by the rule

r<y<=y=zcH-(zxH-y).



REPRESENTATION OF MV-ALGEBRAS 3

In this partial order, every MV-algebra is a distributive lattice bounded
by 0 and —0.

An MV-effect algebra is a lattice ordered effect algebra M in which,
foralla,b € M, (avVb)©a =0bS(aNb). 1t is proved in [4] that there is
a natural, one-to one correspondence between MV-effect algebras and
MV-algebras given by the following rules. Let (M, ®,0,1) be an MV-
effect algebra. Let B be a total operation given by xtHy = x & (2/ Ay).
Then (M,H,,0) is an MV-algebra. Similarly, let (M,H,—,0) be an
MV-algebra. Restrict the operation H to the pairs (z,y) satisfying
x <y and call the new partial operation &. Then (M, &®,0,-0) is an
MV-effect algebra.

Among lattice ordered effect algebras, MV-effect algebras can be
characterized in a variety of ways. Three of them are given in the
following proposition.

Proposition 2.1. [1], [4] Let E be a lattice ordered effect algebra. The
following are equivalent

(a) E is an MV-effect algebra.

(b) For all a,b € E, aANb=0 implies a <.

(c) Foralla,be E,ao (aNb) <V.

(d) For all a,b € E, there exist ay,by,c € E such that a1 & by & ¢
exists, a1 ®c=a and by d c = b.

Notation. In what follows, we will deal with an MV-effect algebra M
and a Boolean algebra B(M) such that M is a 0,1-sublattice of B(M).
In this particular situation, a small notational problem arises: both
M and B(M) are MV-effect algebras, but the &,5 and ' operations
on B(M) and M differ. To avoid confusion, we denote the partial
operation of disjoint join (the @ of Boolean algebras) on a Boolean
algebra by V. The partial difference of comparable elements and the
complement in a Boolean algebra are denoted by \ and C respectively.

Let D be a bounded distributive lattice. Up to isomorphism, there
exists a unique Boolean algebra B(D) such that D is a 0, 1-sublattice
of B(D) and B generates B(D) as a Boolean algebra. This Boolean
algebra is called the Boolean algebra R-generated by D. We refer to [9],
section I1.4, for an overview of results concerning R-generated Boolean
algebras. See also [11] and [17]. For every element x of B(D), there
exists a finite chain xy < ... <z, in D such that © = 21 + ... + x,.
Here, + denotes the symmetric difference, as in Boolean rings. We
then say than {x;}!', is a D-chain representation of x. It is easy to
see that every element of B(D) has a D-chain representation of even
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length. Note that, for n = 2k we have
T=X1+ -+ Top = (ng \ng_1>\7. . \/(1‘2 \ xl).

If Dy, Dy are bounded distributive lattices and ¢ : D1 — Dy is a0, 1-
lattice homomorphism, then 1 uniquely extends to a homomorphism
of Boolean algebras ¢* : B(Dy) — B(D,). Similarly, if [0,a]p is an
interval in a bounded distributive lattice D, then B([0, a]p) is naturally
isomorphic to the interval [0, a]p(p).

Theorem 2.2. [12] Let M be an MV-effect algebra. The mapping
On 2 B(M) — M given by
om(z) = @(@z O Tai-1),
i=1
where {x;}?", is a M-chain representation of x, is a surjective mor-
phism of effect algebras.

We note that the value of ¢/(z) does not depend on the choice of
the M-chain representation of x. Obviously, for all x € M, {x,0} is a
M-chain representation of z. Therefore, ¢p(x) = x © 0 = x, so every
x € M is a fixpoint of ¢y,.

Example 2.3. Let M be an MV-effect algebra, which is totally or-
dered. By [9], Corollary 11.4.19, B(M) is isomorphic to the Boolean
algebra of all subsets of M of the form [ay, b;)U. .. Ula,,b,). Here, we
denote [a,b) = {z € M : a <z < b}. The ¢y : B(M) — M morphism
is then given by

¢M([a1, bl)U R U[an, bn)) = (bl o CLl) D...D (bn S an).

Example 2.4. In this example, [0, 1] denotes the closed real unit inter-
val. Let Cjo 1) be the MV-effect algebra of all real continuous functions
f:]0,1] — [0,1]. Let B be the Boolean algebra

11 B(o.1),

z€(0,1]
where B([0, 1]) is the Boolean algebra generated by semiopen intervals
as described in Example 2.3. It is obvious that Cj ), as a bounded
lattice, can be embedded into B by a mapping v : £ — B given by
v(f) = ([0’f<x>)):v€[0,1]' The image of E' under v then generates a
Boolean subalgebra of B, which we can identify with B(Cjoj). The
¢C[O,1] : B(Co,17) — Clo,1) mapping can then be constructed as follows.

Let (Ay)zep0,1) € B(Cpo,1)- Fixa € [0, 1] and write A, = [a1,01)U. .. Ulay, by).

The value of the continuous function ¢¢y, ,, ((Az)zefo,1)) at z is then equal
to(hh©a)®...d (by S ay).
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Let E be an effect algebra. A relation ~ on E is a weak congruence
iff the following conditions are satisfied.

(C1) ~ is an equivalence relation.
(02) If ay; ~ dg, b1 ~ bg and (ll@bl, ag@bg exist, then al@bl ~ ag@bg.

If F is an effect algebra and ~ is a weak congruence on FE, the
quotient E/ ~ (& is defined on E/ ~ in an obvious way) need not to
be a partial abelian monoid, since the associativity condition may fail
(c.f. [10]). This fact motivates the study of sufficient conditions for a
weak congruence to preserve associativity. The following condition was
considered in [3].

(C5) If a ~ b@ ¢, then there are by, ¢; such that by ~ b, ¢; ~ ¢, by D¢y
exists and a = by P ¢;.

In [3], it was proved that for a partial abelian monoid P and a
weak congruence ~, satisfying (C5), the quotient P/ ~ is again a
partial abelian monoid. Moreover, it is easy to prove that the eventual
positivity of P is preserved for such ~. However, for an effect algebra
E, the (C5) property of ~ does not guarantee that the ' operation is
preserved by ~. If / is preserved by ~, that means, if condition

(C6) If a ~ b, then @’ ~ V.

is satisfied, then E/ ~ is an effect algebra. A relation on an effect
algebra satisfying (C1),(C2),(C5),(C6) is called an effect algebra con-
gruence. For every effect algebra congruence ~ on an effect algebra F,
the mapping a — [a]. is a full morphism of effect algebras.

We refer the interested reader to [19] and [10] for further details
concerning congruences on effect algebras and partial abelian monoids.

The (b) and (c) of the following lemma are just two equivalent |-
to-< reformulations of the (C3) property from [10]. Thus, the lemma
is (implicitly) well known, but we cannot find it in print.

Lemma 2.5. Let ~ be a congruence on an effect algebra E. For all
x,y € E, the following are equivalent.

) [2] <[yl

(a

(b) There is x1 ~ x such that z; < Y.

(c) There is yy ~y such that x < y;.
Proof.

(b) = (a) and (c¢) = (a) are trivial.

(a) = (b): As [z]~ < [y]~, there is u € F such that [z]. @ [u]. =
[y]~. This implies that there are xg,ug € E such that zq ~ z, ug ~ u,
xo P ug exists, and xy B ug ~ y. By the (C5) property, there are xy, uy
such that xy ~ xg, uy ~ ug, r1 O uy exists, and z; B uy = y.
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(a) = (c): By the (C6) property, [¢]. < [2']~. As (a) = (b),
there is z ~ 3/ such that z < 2’ and this is equivalent with z < z’. By
the (C6) property, z ~ ¢ iff 2/ ~ y and we can put y; = 2/ O

Recall that an effect algebra E satisfies the Riesz decomposition prop-
erty iff for all u,v,v9 € E, u < vy @ vy iff there are uy, us such that
uy < v, us < vy and u = uy D ug. A lattice ordered effect algebra is
an MV-effect algebra iff it satisfies the Riesz decomposition property.
There are non-lattice ordered effect algebras satisfying the Riesz de-
composition property, for example the effect algebra of all polynomial
functions [0, 1]g — [0, 1]g. By [20], every effect algebra satisfying the
Riesz decomposition property can be embedded, as an interval in the
positive cone, into a partially ordered abelian group satisfying the Riesz
decomposition property. This result is a generalization of the famous
result by Mundici from [18].

An effect algebra satisfies the Riesz interpolation property iff for all
elements wuy, ug, v1,vo such that w; < v; for all 4,5 € {1,2}, there is an
element x such that = is an upper bound of uy, us and a lower bound of
vy, v9. If an effect algebra satisfies the Riesz decomposition property,
then it satisfies the Riesz interpolation property. The opposite impli-
cation is not true, since every lattice ordered effect algebra satisfies the
Riesz interpolation property, but there exist (obviously) some effect
algebras that are lattice ordered and non-MV.

3. FrRoM MV-PAIRS TO MV-EFFECT ALGEBRAS

Let B be a Boolean algebra. We write Aut(B) for the group of all
automorphisms of B. Let G be a subgroup of Aut(B). For a,b € B,
we write a ~¢ b iff there exists f € G such that b = f(a). Obviously,
~¢ is an equivalence relation. We write [a]¢ for the equivalence class
of an element a of B.

A pair (B,G), where B is a Boolean algebra and G is a subgroup
of Aut(B) is called a BG-pair. BG-pairs are a well-established topic
in the theory of Boolean algebras, see for example Chapter 15 of the
handbook [16].

Let (P, <) be a poset. Let us write,

max(P)={m e P:x>m = z=m},

that means, max(P) is the set of all maximal elements of the poset P.
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Let B be a Boolean algebra, let G be a subgroup of Aut(B). For all
a,b € B, we write

L(a,b) ={a N f(b) : f € G} and
L*(a,b) = {g(a) N f(b) : f.g € G}.

Note that L(a,b) C L*(a,b) and that L™ (a,b) is closed with respect to
any h € G this implies that L*(a,b) is a union of equivalence classes
of ~G.

Definition 3.1. Let B be a Boolean algebra, let G be a subgroup
of Aut(B). We say that (B,G) is an MV-pair iff the following two
conditions are satisfied.

(MVP1) For all a,b € B, f € G such that a < b and f(a) < b, there is
h € G such that h(a) = f(a) and h(b) = b.

(MVP2) For all a,b € B and x € L(a,b), there exists m € max(L(a,b))
with m > .

Example 3.2. For every finite Boolean algebra B, (B, Aut(B)) is an
MV-pair.

Example 3.3. Let B be a Boolean algebra with three atoms a4, as, as.
The mapping f given by

anlagaga?agagl

f(@)]0]ay|as|ay|aS|al|al]1

is an automorphism of B and G = {id, f, f*} is a subgroup of Aut(B).
However, (B,G) is not an MV-pair. Indeed, we have a; < ag and
f(a1) = ay < a8, but there is no h € G such that h(a;) = f(a;) and
h(al) = aS.

Example 3.4. Let B be the Boolean algebra of all Borel subsets of the
real unit interval [0, 1]z that are unions of a finite number of intervals.
(as usual, we identify the Borel sets that differ by a set of measure
0.) Let W be the subgroup of the permutation group of [0, 1]g that is
generated by the set of all bijections p,; given by

T if z € [0, 4],
Pap(x) =< a+b—x ifxe (a,b),
x if z € [b, 1],

where 0 < a < b < 1. For every p € W, let f, be the mapping
fp : B — B given by f,(X) = p(X) and let G = {f, : p € W}
Obviously, G is a subgroup of Aut(B). Then (B, G) is an MV-pair; the
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proof of this fact is a bit longer, but straightforward. Note that every
f» € G preserves measure.

Example 3.5. Let 2% be the Boolean algebra of all subsets of Z. Then
(2%, Aut(2%)) is not an MV-pair. Indeed, let f € Aut(2%) be the au-
tomorphism of 2% associated with the permutation f(n) =n + 1. Let
A =B =N. Wesce that f(A) = A\ {0}, AC Band f(A) C B. HOW—
ever, there is no h € Aut(2%) such that h(A) = f(A) and h(B) =
simply because A = B implies that h(A) = h(B), but f(A) # B.

The (MVP1) condition can be reformulated:

Lemma 3.6. Let B be a Boolean algebra, let G be a subgroup of
Aut(B). Then the following conditions are equivalent.

(a) (MVPI1)
(b) For all a,b € B, f € G such that a < b and a < f(b), there is
h € G such that h(b) = f(b) and h(a) = a.
(¢) For all a,b € B, f € G such that aNb =0 and a A f(b) =
there is h € G such that h(b) = f(b) and h(a) =
Proof.
(a) = (b): Replace a with b° and b with o and apply the fact that
f is an automorphism.
(b) = (c): Replace b with &L,
(¢) = (a): Replace b with a and a with &%, O

Lemma 3.7. Let (B,G) be an MV-pair, let a,b € B and let m be a
mazximal element of L(a,b). For all f € G, f(m) is a mazimal element
of L (a,b).

Proof. Suppose that there is some element in y € L*(a,b) with y >
f(m) and write y = g1(a) A f1(b), where g1, f1 € G. Since m € L(a,b),
a > m and since

angy ' (f1(0)) = g1 (g1(a)Af1(b) = g1 ' (y) = g7 " (f(m)) = (g1 o f)(m),

we see that a > (g, Of)( ).

By (MVP1), a > (g 0 f)(m) a
h € G such that h(a) = a and h(m)
both sides of the inequality

aAgr (f1(b) = (g1 o f)(m),

Z imply that there exists
gyt o f)(m). We apply h™! to

to obtain

Pt (ang () =anh ™ (g () = 57 (o o F)(m)=m
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Since m is a maximal element of L(a,b), a A h*1<gl_1(f1(b))> > m

implies that a A h~! (gl_l (fl(b))> = m. After we apply the mapping

g1 0 h on both sides of the latter equality we obtain y = g1(a) A f1(b) =
f(m). Thus, f(m) is maximal in L™ (a,b). O

Note that Lemma 3.7 implies that max(L(a, b)) € max(L™*(a,b)).

Corollary 3.8. Let (B,G) be an MV-pair. For all a,b € B and x €
Lt (a,b), there exists m € max(L™(a,b)) with m > x.

Proof. As x € L*(a,b), we have x = gy(a) A f1(b) for some fi,g1 € G.
Then

g1 (91(a) A f1(0) = a g (ai(b)) € L(a,b).

By (MVP2), there is m € max(L(a,b)) with m > a A g7'(ai(b)).
This implies that g;(m) > gi(a) A fl(b) By Lemma 3.7, gi1(m) €
max(L*(a,b)). O

Theorem 3.9. Let (B, G) be an MV-pair. Then ~¢ is an effect algebra
congruence on B and B/ ~¢g is an MV-effect algebra.

Proof. We shall prove that the equivalence ~¢ is an effect congruence.
It is easy to see that ~¢ preserves the C operation, so (C6) is satisfied.
To prove (C5), let a1, as € B be such that a;Vay exists and a;Vay ~¢ b.
Then there is f € G such that f(a;Vay) = b and we may put by = f(ay)
and by = f(as).

Let us prove (C2). Let ay,a9,b1,bo € B be such that a; ~g as,
by ~g by, and a;Vby,asVby exist. There are f,, fy € G such that
fa(al) = a2 and fb(bl) = bg.

We see that bg > ao and that implies

= £,1(05) = fy M (a2) = £, (falar)) = (fy " o fa)(aa).

By (MVP1), a; < b8 and (f; ' o f,)(a;) < b% imply that there is h € G
such that h(a;) = (f; o fa)(a1) and h(b%) = 68 Therefore,

fo(harVby)) = fo(R(ar)Vh(b1)) = fi((fy "o fu)(a)Vhi) = fa(ar)V fo(by) = azVbs,

and a;Vby ~¢a asVbs.

Since ~¢ is an effect congruence, B/ ~¢ is an effect algebra. By
Proposition 4.3 of [13], since B satisfies the Riesz decomposition prop-
erty, B/ ~¢ satisfies the Riesz decomposition property as well. It
remains to prove that B/ ~¢ is a lattice. Since an effect algebra is a
lattice iff it is a (join or meet) semilattice, it suffices to prove that for
all a,b € B, [a]g A [b]¢ exists in B/ ~¢.
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Let a,b € B. We shall prove that every common lower bound of
la]a, [b]¢ is below a maximal common lower bound of [alg, [b]c-

If [c]¢ < [alg, [b]e then, by Lemma 2.5, there is ¢; ~¢ ¢ such that
¢1 < a and, again by Lemma 2.5, by ~¢g b such that ¢; < b. As by ~¢ b,
there is f € G such that b; = f(b). Thus,

cr~g e <aA f(b) € L(a,b).

By (MVP2), there is m € max(L(a,b)) with a A f(b) < m. Obvi-
ously, m € L(a,b) implies that [m|s < [a]g, [b]g. Therefore, for every
common lower bound [c]g of [a]g, [b]g, there is m € max(L(a,b)) such
that

e < [m]e < [dg, [b]e-

Let us prove that [m]s is a maximal common lower bound of [alg, [b]
in B/ ~q. Suppose that

[m]e < [z]e < [d]e, [ble-
By Lemma 2.5, there are m; ~g m, x1 ~g x and b; ~¢ b such that
my < x1 < a, by

There is f € G such that by = f(b). We see that 1 < a A f(b) €
L(a,b) C L*(a,b). There is g € G such that m; = g(m). By Lemma
3.7, my = g(m) is maximal element of L*(a,b). Therefore, m; =
a A f(b) and hence xy = m;. This implies that [m|q = [z]s.

Let [mi]g,[msa]e¢ be maximal common lower bounds of [alg, [b]c.
Since B/ ~¢ satisfies the Riesz decomposition property, B/ ~¢ satis-
fies the Riesz interpolation property. By the Riesz interpolation prop-
erty, there is [m]g such that [mi]e, [me]e < [m]e < [d]a, [b]e. Since
[mi]g, [me]e are maximal, [my]e = [m]g = [me]e. Since every common
lower bound of [a]g, [b]¢ is below a maximal one, and there is a single
maximal common lower bound of [a]g, [b]g, [alc A [b]¢ exists.

Note that we have proved that [a]g A [b]¢ = LT (a,b). In particular,
L*(a,b) is a single equivalence class of ~g. O

In what follows we shall denote the MV-effect algebra arising from
an MV-pair (B, G) in the way indicated above by A(B, G).

4. FROM MV-EFFECT ALGEBRAS TO MV-PAIRS

We have proved that for every MV-pair (B, G) there is an MV-effect
algebra A(B, G) arising from it. In this section, we shall prove that for
every MV-effect algebra there is a MV-pair (B, G) such that A(B, G) ~
M.
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Let M be an MV-effect algebra. Let S be a subset of B(M). We
say that a mapping f : S — B(M) is ¢p-preserving iff, for all x € S,
du(x) = o (f(x)) or, in other words, ¢y restricted to S equals @0 f.

Theorem 4.1. Let M be an MV-effect algebra. Let G(M) be the set
of all ¢pr-preserving automorphisms of B(M). Then (B(M),G(M)) is
an MV-pair and A(B(M),G(M)) is isomorphic to M.

We have divided the proof into a sequence of lemmas. In this section,
M is an MV-effect algebra and G(M) is the subgroup of Aut(B(M))
described in Theorem 4.1.

Lemma 4.2. Let c,d € M, d < c. There is a ¢p-preserving isomor-
phism
Y2 B([0,codly) — [0,¢\ d]par

Proof. Consider the mapping vy : [0,c © d]ar — [0, ¢\ d]| (), given by
o(z) = (x @ d) \ d. We see that ¢y(0) = 0, Yo(c© d) = ¢\ d and,
since 1 is just a composition of a translation in M and a translation
in B(M), 1 preserves joins and meets. Moreover, it is easy to see
that 1y is injective, hence 1y is a 0, 1-lattice embedding of [0, c © d]y,
into [0,c¢ \ d|pry. We shall prove that the range of 1)y R-generates
the Boolean algebra [0,c \ d|p). %o then uniquely extends to an
isomorphism v : B([0,c © d|a) — [0, ¢\ d] -

Let z € [0, ¢\ d]par. Let {z;}7"4 be an M-chain representation of z.
For all 1 <i < n, x9; \ 2,1 < ¢\ d. By elementary Boolean calculus,
this implies that

To; \ Toi—1 = ((LUQZ V d) A C) \ ((:cgi,l V d) A C).
For all 1 < j < 2n, (z; Vd) Ac € [d, c] Therefore, x has a M-chain
representation {y;}3*, C [d, c|pr. Since, for all 1 <i < n,
Y2i \ Y2ie1 = (y2i \ d) \ (y2i-1 \ d),

{y; \ d}?", is a chain representation of z. It remains to observe that,
forall 1 <1 <2n,

yi\d=((rod) ®d)\d= oy ©d)
and that y; © d € [0,c © d]y. Thus, every element of [0, ¢\ d]p) has
a ([0, ¢ © d]pr)-chain representation.
Let us prove that ¢ is a ¢p-preserving mapping. Let z € B([0,c o
dar), let {z;}2" be a [0, ¢ & d]p-chain representation of 2. Then

M (w(z)) = ¢um (¢(v?:1(22¢ \ 221'71))) =
= dum (\7?:1¢<32i \ Z2i—1)) = @ Om (w(zm \ ZZi—l))
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and, for all 1 <17 <n,
Omr (@D(Zm’ \ Zzi—l)) = oM (@D(Zzi) \ ¢(22i—1)) =
= ¢M(((22z' ©d)\d)\ ((z2: © d) \ d))
= Onr((22i D d) \ (22: B d)) = Par(22 B d) © Py (225 B d) =
= (22: D d) © (22i-1 B d) = 22; © 22i-1 = P22 \ 22i-1)-

so we obtain

) = @ Onr (¥ (22 \ 22i-1)) = @W(Zzz‘ \ 22i-1) = Pum(2).

0

Corollary 4.3. Let ¢1,dy,co,dy € M be such that ¢y > dy, co > do
and ¢ © di = ¢co © dy. There is a ¢pr-preserving isomorphism 1 :
[Oa C1 \ dl]B(M) - [0, (&) \ d2]B(M)-

Proof. Use Lemma 4.2 twice. O

Lemma 4.4. For every a € B(M), there is a ¢p-preserving isomor-
phism of Boolean algebras 1 : B([0, ¢ar(a)]ar) — [0, al s -

Proof. Let {a;}?"; be an M-chain representation of a. Then {ag; \
agi_1}m, is a decomp081t10n of unit in the Boolean algebra [0, a]p(u)
and ¢pr(a) = @) (a2;6a9;,_1. For j € {0,...,n}, write b; = @Ll(azi@
agi—1). Then {b;}7_, is a finite chain in [0, dp(a)]y with by = 0
and b, = ¢un(a). Thus, {b; \ b;_1}}_, is a decomposition of unit in
the Boolean algebra B([0, ¢ar(a)]as). For every x € B([0, dar(a)|m),
Tr = \/;le N (b] \ bj—l)- Since, for all j, bj © bj—l = Q25 © 251, Corol-
lary 4.3 implies that, for all 1 < ¢ < n, there is a a ¢/-preserving
1somorphlsm ;010,05\ bj_1] By = [0, az; \ agj—1] ). Define (z) =

Vicy 5 A (b \ b))

The proof that 1) is a ¢,-preserving isomorphism of Boolean algebras

is trivial and thus omitted.
O

Corollary 4.5. Let a,b € B(M) be such that ¢p(a) = (;SM(b). Then
there is a ¢pr-preserving isomorphism 1 : [0, algry — [0, b B

Proof. Use Lemma 4.4 twice. O

Lemma 4.6. Let u,v € B(M), uANv =0, ¢p(u) = ¢pp(v). Then
there is a ¢pr-preserving automorphism f of B(M) such that f(u) = v
f(v) = u and for all z < (uVv)®, f(z) = x.
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Proof. By Corollary 4.5, there is an isomorphism ¢ : [0,u]pay —
0, v]g(ary- Let f: B(M) — B(M) be a mapping given by

Flx) =0~ (@ Av)Vab(z Au)V(z A (uve)b).

It is easy to check that, for all x € B(M), f(f(x)) = x. Thus, f
is a bijection. Moreover, we see that f(0) = 0, f(1) = 1 and, for all
x,y € B(M),

fl@vy) =4 ((xzVy) ANo)Vy((z Vv )Au)v((xVy)A(qu)B):
bz AV (y A )V (e Au) V (y Aw))V((z A (uwvo)B)v
V (y/\ u\/v )) =
= (v Ha A o)V (z Au)V (e A (uvo)b))v
V (7 @ Ao)Vab(x Au)V(x A (uvo)b)) =
= f@) VvV f(y)
and
l(sc A U) Vip(zb A )\'/(1:[J A (qu)C) =
x Av))Vip(u\ :(:/\u))'(xc/\ UV
= (u\ v x/\v) (v \wx/\u))'(xc/\ UV
= (v (@ Av)V(z Au)V(z A (u\/v)))c

The latter equality follows by elementary Boolean calculus. Since f
preserves 0,1,V and © it is a homomorphism of Boolean algebras. O

Lemma 4.7. Let u,v € B(M), ¢n(u) = ¢pr(v). Then there is a ¢pr-
preserving automorphism f of B(M) such that f(u) = v, f(v) = u and
for all z < (uvv), f(z) = .

Proof. Put ug =u\ uAvand vy =v\ uAv. Since

b (o) ® Par(uAv) = dpr(u) = dpr(v) = Par(vo) @ dar(u A v),

dar(ug) = ¢dar(vg). By Lemma 4.6, there is f € G(M) such that
f(uo) = v, f(vg) = ug and for all € B such that = < (ugVu,)®
we have f(z) = 0. Since u Av < (uoVvo)l, f(uAv) = uAv. Therefore,

f(w) = fugV(uAv)) = flug)V(uAv) =veV(uAv) =0

and, similarly, f(v) = u.
Let z < (uV )L, Since = < (ugVp), f(z) = z. O

Corollary 4.8. For all u,v € B(M), u ~cuun v iff dapr(u) = dm(v).
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Proof. One implication follows by the definition of G(M), the other

one follows by Lemma 4.7. O
Corollary 4.9. For allu € B(M), u ~g ¢p(u).
Proof. Put v = ¢p;(u) in Corollary 4.8 O

Proof of Theorem 4.1.
(MVP1): Let a,b € B(M), f € G be such that a < b, a < f(b). Let

u=>0\(bA f(b)), v=f(b)\ (bA f(b)). We have
dar(u) = a0\ (BN f(D))) = dar(b) © ur (DA f(1))) =

= ou(f(0) © onr(bA f(b))) = dne(f(B)\ (A (D)) = dn(v).
By Lemma 4.6, there is a ¢/-preserving automorphism h of B(M)
with h(u) = v. Moreover, since aAu=aAv=0and (bA f(b)) ANu=
(bA f(b)) Nv =0, we have h(a) = a and h(b A f(b)) = b A f(b). This
implies that

h(b) = h((b A f(b))Vu) = h((b A f(D)))Vh(u) = (b A f(b))Vo = (D).
Thus, there is h € G such that h(a) = a and h(b) = f(b). By Lemma
3.6, this implies (MVP1).

(MVP2): Let a A f(b) be an element of L(a,b). By Corollary 4.9,
there is f; € G such that fi(a) = ¢p(a). Since f is ¢p-preserving,
o (filanf(b)) = om(an f(b)). By Corollary 4.9, there is g € G such
that g(fi(a A f(b))) = éu(a A f(b)). Since

filan 5(8) < (o) = bu(a)
and
g(fila A f()) = dula A f(b)) < dn(a),
(MVP1) implies that there is h € G such that A(fi(aA f(D))) = dp(an

f(b)) and h(¢n(a)) = pr(a).

Put y = a A f; ' (W™ (oam(f(D)))). We shall prove that y > a A f(b)
and that y is a maximal element of L(a,b).

Indeed, we have

h(fi(a)) = h(¢n(a)) = du(a),

therefore
— h(filan T (o (F()))) =
:h( Ful@) AR(f (7 (h Hom(f(0)))) =
= ¢um(a) A ou(f (b)) = dn(a) A dur(b)
and

h(fila A f(b)) = onla A (f(0)) < dar(a) A du(f (b)) = h(f1(y)).
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Since both h and f; are automorphisms of B(M), the latter inequality
clearly implies that a A f(b) < y. Moreover, since h and f; are ¢~
preserving and ¢, restricted to M is the identity mapping, we obtain

Ou(y) = ou(h(f1(y)) = Pr(Pn(a) A dar (b)) = dar(a) A b ().

Let us prove that y is maximal in L(a,b). Suppose that z € L(a,b),
z >y. Since z = a A fy(b) for some f, € G, we see that

ou(2) = du(a N fa(b)) < dar(a) A o (f2(b) = dar(y).

This implies that ¢ar(2) = o (y). As (2 \y) = du(2) © du(y) =0
and ¢y is faithful, z \ y = 0 and hence z = y.

Let us prove that A(B(M),G(M)) is isomorphic to M. The isomor-
phism ¢ : A(B(M),G(M)) — M is given by

d(lalown) = du(w).

By Corollary 4.8, v is well-defined and injective. Since, for all a €
M, Y([alaon) = a, ¢ is surjective. Obviously, ¥([1]qu) = 1. Let
lalcony, Dlaoany € A(B(M),G(M)) be such that [a]g, [blaoan. We
may always select the elements a,b € B(M) so that aVb exists, that
means, a A b= 0. Since ¢y is a morphism of effect algebras, ¢y (a) @
o (b) exists in M and we may compute

Y(lalean © Bblewn) = Y([aVblann) = ¢u(avd) =
= ¢ur(a) ® oar(b) = v([a]awrn) ® Y([blaan),

hence 1) is a morphism of effect algebras. It remains to prove that v
is a full morphism. Suppose that 9 ([a]cr)) @ ¥ ([blar)) exists in M.

Consider the elements ¢y (a) and (¢ar(a) ® drr(b)) \ dar(a) of B(M).
We see that

or(a) A ((oar(a) @ dar (b)) \ dnr(a)) =

(
that means, ¢ur(a)V((dr(a) ® dar(b) (a)) exists in B(M) This

\ ouml(a
implies that [¢u(a)lcon @ [(Pam(a) ® dar(D)) \ dm(a))laon exists in
A(B(M),G(M)). Finally,

U(lom(a)lenn) = ou(dm(a)) = oula) = ¥([aleon)

and

D([(oa(a@)Ddr (D) \Onr(a)laany) = ¢ ((0a1(a) B Par(D)) \nr(a)) =

= onr(onr(a) ® o (b)) © dar(dar(a)) = (dnr(a) ® o (b)) © darla) =
= om(b) = V([blan)-

O
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