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Abstract

We prove that every for every complete lattice ordered effect algebra E there exists an
orthomodular lattice O(E) and a surjective full morphism φE : O(E)→ E. φE preserves
blocks in both directions: the (pre)image of a block is always a block. Moreover, there is
a 0, 1-lattice embedding φ∗E : E → O(E).
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1. Introduction

Effect algebras have recently been introduced by Foulis and Bennett in [9]
for study of foundations of quantum mechanics. The class of effect algebras
includes orthomodular lattices and a subclass equivalent to MV-algebras
(see [4]).

In [30], Riečanová proved that every lattice ordered effect algebra is a
union of (essentially) MV-algebras. This result is a generalization of the well-
known fact that every orthomodular lattice is a union of Boolean algebras.
Generalizing the terminology from orthomodular lattices, a maximal sub-
MV-effect algebra of a lattice-ordered effect algebra is called a block. Later,
Riečanová and Jenča proved in [24] that the set of all sharp elements of a
lattice ordered effect algebra forms an orthomodular lattice. Both papers
show that the class of lattice ordered effect algebras generalizes the class
of orthomodular lattices in a very natural way. In [18] a new class, called
homogeneous effect algebras was introduced and most of the results from
[30] and [24] were generalized for the homogeneous case. The main result
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of [18] is that every homogeneous effect algebra is a union of effect algebras
satisfying the Riesz decomposition property.

Intuitively, one can consider the class of lattice ordered effect algebras
as an “unsharp” generalization of the class of orthomodular lattices and the
class of homogeneous effect algebras as an “unsharp” generalization of the
class of orthoalgebras (see [10]). In these generalizations, the role of Boolean
algebras is played by MV-effect algebras and by effect algebras with the Riesz
decomposition property. The problems concerning this generalization were
examined, for example, in [31] and [19]. The present paper continues this
line of research.

The basic question we deal with in this paper is: “How are the blocks
in a complete lattice ordered effect algebra organized?”. The main result
is that for every complete lattice ordered effect algebra E, there exists an
orthomodular lattice O(E) and a surjective full morphism of effect algebras
φE : O(E) → E such that for every block B of O(E), φE(B) is a block and
for every block M of E, φ−1

E (M) is a block of O(E). This shows that the
block structure of every complete lattice ordered effect algebra is the same
as the block structure of some orthomodular lattice. For the finite case,
this result was proved in [19]. Moreover, we prove that the lattice E can be
0, 1-embedded into the lattice O(E).

Our construction of O(E) is based on certain relations on the set of all
quotients (that is, comparable pairs of elements) of E. We hope that it will
be possible to adapt the techniques we developed in this paper in order to
deal with the more general orthocomplete non-lattice ordered case. Most of
the theorems were designed with this long-term goal in mind.

2. Definition and basic relationships

An effect algebra is a partial algebra (E;⊕, 0, 1) with a binary partial
operation ⊕ and two nullary operations 0, 1 satisfying the following condi-
tions.

(E1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.

(E2) If a⊕b and (a⊕b)⊕c are defined, then b⊕c and a⊕ (b⊕c) are defined
and (a⊕ b)⊕ c = a⊕ (b⊕ c).

(E3) If a⊕ b = a⊕ c, then b = c.

(E4) If a⊕ b = 0, then a = 0.

(E5) For every a ∈ E there is an a′ ∈ E such that a⊕ a′ = 1.

(E6) For every a ∈ E, a⊕ 0 = a.
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Effect algebras were introduced by Foulis and Bennett in their paper [9].
In the original paper, a different but equivalent set of axioms was used.

In their paper [26], Chovanec and Kôpka introduced an essentially equiv-
alent structure called D-poset. Their definition is an abstract algebraic ver-
sion the D-poset of fuzzy sets, introduced by Kôpka in the paper [25]. An-
other equivalent structure was introduced by Giuntini and Greuling in [12].
We refer to [7] for more information on effect algebras and related topics.

One can construct examples of effect algebras from an arbitrary partially
ordered abelian group (G,≤) in the following way: Choose any positive
u ∈ G; then, for 0 ≤ a, b ≤ u, define a ⊕ b if and only if a + b ≤ u and put
a ⊕ b = a + b. With such partial operation ⊕, the interval [0, u] becomes
an effect algebra ([0, u],⊕, 0, u). Effect algebras which arise from partially
ordered abelian groups in this way are called interval effect algebras, see [2].

In an effect algebra E, we write a ≤ b if and only if there is c ∈ E such
that a⊕ c = b. It is easy to check that for every effect algebra ≤ is a partial
order on E. Moreover, it is possible to introduce a new partial operation
	; b 	 a is defined if and only if a ≤ b and then a ⊕ (b 	 a) = b. It can be
proved that, in an effect algebra, a⊕ b is defined if and only if a ≤ b′ if and
only if b ≤ a′. The partial operations ⊕ and 	 are connected by the rules

a⊕ b = (a′ 	 b)′ (1)
a	 b = (a′ ⊕ b)′. (2)

Let E0 ⊆ E be such that 1 ∈ E0 and, for all a, b ∈ E0 with a ≥ b,
a	b ∈ E0. Since a′ = 1	a and a⊕b = (a′	b)′, E0 is closed with respect to
⊕ and ′. We then say that (E0,⊕, 0, 1) is a subeffect algebra of E. Another
possibility to construct a substructure of an effect algebra E is to restrict
⊕ to an interval [0, a], where a ∈ E, letting a act as the unit element. We
denote such effect algebra by [0, a]E .

Example 2.1. Let G be the set of all real functions, partially ordered in the
usual way. Let u be the constant function u(x) = 1. Then the restriction of
+ from G to the set [0, u] gives rise to an effect algebra, which we denote by
[0, 1][0,1]. Note that [0, 1][0,1] is a complete distributive lattice.

Let E1, E2 be effect algebras. A map φ : E1 7→ E2 is called a morphism
of effect algebras if and only if it satisfies the following condition.

(M1) φ(1) = 1 and, for all a, b ∈ E1, if a ⊕ b exists in E1, then φ(a) ⊕ φ(b)
exists in E2 and φ(a⊕ b) = φ(a)⊕ φ(b).

Every morphism preserves ′, 0, ≤ and 	.
A morphism φ : E1 7→ E2 of effect algebras is called full if and only if

the following condition is satisfied.
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(M2) If φ(a) ⊕ φ(b) exists in E2 and φ(a) ⊕ φ(b) ∈ φ(E1), then there exist
a1, b1 ∈ E1 such that a1 ⊕ b1 exists in E1, φ(a) = φ(a1) and φ(b) =
φ(b1).

A bijective and full morphism is called an isomorphism of effect algebras.
An ideal of an effect algebra E is a subset I of E satisfying the condition

a, b ∈ I and a⊕ b exists ⇐⇒ a⊕ b ∈ I.

The set of all ideals of an effect algebra E is denoted by I(E). I(E) is a
complete lattice with respect to inclusion.

An element c of an effect algebra is central (see [14]) if and only if [0, c]
is an ideal and, for every x ∈ E, there is a decomposition x = x1 ⊕ x2 such
that x1 ≤ c, x2 ≤ c′. It can be shown that this decomposition is unique.
The set C(E) of all central elements of an effect algebra is called the center
of E. C(E) is a Boolean algebra. For every central element c of E, E is
isomorphic to [0, c]E × [0, c′]E . For every central element c of E and every
element a ∈ E, a ∧ c exists and the mapping a 7→ a ∧ c is a full morphism
from E onto [0, c]E ; in other words, (a1 ⊕ a2) ∧ c = (a1 ∧ c) ⊕ (a2 ∧ c) and
a = (a ∧ c)⊕ (a ∧ c′).

If E is an effect algebra such that (E,≤) is a lattice, then we say that E
is a lattice ordered effect algebra. If (E,≤) is a complete lattice, then we say
that E is a complete lattice ordered effect algebra. An orthoalgebra E [11] is
an effect algebra satisfying a ≤ a′ =⇒ a = 0. It is easy to check that an
effect algebra is an orthoalgebra if and only if, for all elements a, a∧ a′ = 0.

Example 2.2. Recall, that an orthomodular lattice is an algebra (O;∨,∧, ′, 0, 1)
such that (O;∨,∧, 0, 1) is a bounded lattice, a ≤ b iff b′ ≤ a′, a′′ = a,
a ∧ a′ = 0, (a ∨ b)′ = a′ ∧ b′, and the orthomodular law

a ≤ b =⇒ b = a ∨ (b ∧ a′) (3)

is satisfied. Equip O with a partial operation as follows a⊕b is defined iff a ≤
b′ and then a⊕b := a∨b. Then (O;⊕, 0, 1) is an orthoalgebra. On the other
hand, for every lattice ordered orthoalgebra (O;⊕, 0, 1), (O;∨,∧, ′, 0, 1) is an
orhomodular lattice. However, there exist non-lattice ordered orthoalgebras.

Example 2.3. An MV-algebra (see [4], [28]) is a commutative semigroup
(M ;⊕,¬, 0), satisfying the identities x⊕ 0 = x, ¬¬x = x, x⊕ ¬0 = ¬0 and

x⊕ ¬(x⊕ ¬y) = y ⊕ ¬(y ⊕ ¬x).

There is a natural partial order in an MV-algebra, given by y ≤ x iff
x = x ⊕ ¬(x ⊕ ¬y). Every MV-algebra (M ;⊕,¬, 0) can be considered as a
effect algebra (M ;⊕, 0,¬0), when we restrict the operation ⊕ to the domain
{(x, y) : x ≤ ¬y}.
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Every lattice ordered effect algebra satisfies the de Morgan laws. More
generally, for an interval [0, a] and x, y ∈ [0, a], we have

a	 (x ∨ y) = (a	 x) ∧ (a	 y) (4)
a	 (x ∧ y) = (a	 x) ∨ (a	 y). (5)

A substitution a = b′ and an application of (2) now yields

b⊕ (x ∨ y) = (b⊕ x) ∨ (b⊕ y) (6)
b⊕ (x ∧ y) = (b⊕ x) ∧ (b⊕ y), (7)

for all x, y ≤ b′.
Let E be a lattice ordered effect algebra. For a pair of elements a, b ∈ E,

the following conditions are equivalent:

• a	 (a ∧ b) = (a ∨ b)	 b.

• a	 (a ∧ b) ≤ b′.

• There are a1, a2 such that a = a1 ≤ a2, a1 ≤ b, a2 ≤ b′.

• There are a1, c, b1 such that a1⊕c⊕b1 exists, a = a1⊕c, and b = b1⊕c.

If a, b satisfy any (or, equivalently, all) of these conditions, then we say that
a, b are compatible (in symbols a↔ b). It is easy to check that a ≤ b or a ≤ b′

implies that a ↔ b. Moreover, a ↔ b if and only if a ↔ b′. We say that a
subset A ⊆ E is compatible if and only if for all a, b ∈ A we have a ↔ b.
If M a lattice ordered effect algebra such that M is a compatible subset of
M , then we say that M is an MV-effect algebra. It was proved in [5] that
there is a natural, one-to-one correspondence between MV-effect algebras
and MV-algebras, as outlined in Example 2.3. Every MV-effect algebra is a
distributive lattice. A lattice ordered effect algebra is an MV-effect algebra
if and only if, for all elements a, b,

a ∧ b = 0 =⇒ a ≤ b′,

that means, the sum of every disjoint pair exists (see [1]). An orthoalgebra
that is an MV-effect algebra is a Boolean algebra.

Let L be a lattice. We say that L0 ⊆ L is a full sublattice of L if and
only if

• for all A ⊆ L0 such that
∨
A exists in L,

∨
A ∈ L0, and

• for all A ⊆ L0 such that
∧
A exists in L,

∧
A ∈ L0.

Note that a full sublattice of a complete lattice is complete.
Let E be a lattice ordered effect algebra. A subeffect algebra of E that

is maximal with respect to the property of being an MV-effect algebra is
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called a block. According to [30], blocks coincide with maximal compatible
subsets of E. Moreover, every block is a full sublattice of E, see [24]. Since
every singleton is a compatible set, a lattice ordered effect algebra is a union
of its blocks.

If L is a compatible sublattice of a lattice ordered effect algebra, then
there is a block M ⊇ L. Since M is a distributive lattice, L is distributive
as well.

If E is an orthomodular lattice, then every block is a Boolean algebra.
Thus, the fact that every lattice-ordered effect algebra is a union of its blocks
is a generalization of the well-known fact that every orthomodular lattice is
a union of Boolean algebras.

We say that an element a of an effect algebra is sharp if and only if
a ∧ a′ = 0. We write S(E) for the set of all sharp elements of an effect
algebra E. An orthoalgebra can be characterized by E = S(E). Every
central element is sharp, hence C(E) ⊆ S(E). In general, S(E) is not closed
with respect to ⊕, see [15]. However, by [24], if E is lattice ordered, then
S(E) is a subeffect algebra and a full sublattice of E. For a block M of a
lattice ordered effect algebra we have S(E) ∩M = S(M) = C(M), see [24].

An effect algebra E is called homogeneous if and only if, for all u, v1, v2 ∈
E such that u ≤ v1 ⊕ v2 ≤ u′, there are u1, u2 such that u1 ≤ v1, u2 ≤ v2,
and u = u1 ⊕ u2. Homogeneous effect algebras were introduced in [18].
Every orthoalgebra and every lattice ordered effect algebra is homogeneous.
The set of all sharp elements of a homogeneous effect algebra is closed with
respect to ⊕, hence it forms an orthoalgebra.

In [18], most of the results (concerning compatibility, blocks, and sharp
elements) from [30] and [24] were generalized for the homogeneous case.
The situation is more complicated here. In a homogeneous effect algebra,
the blocks need not be lattice ordered anymore (they only satisfy the Riesz
decomposition property) and the notion of compatibility has to be generalized
as well.

Example 2.4. Let B be a Boolean algebra with at least two elements. Let
us equip B × B with a partial ⊕ operation as follows: 〈x1, x2〉 ⊕ 〈y1, y2〉 is
defined if and only if x1 ∧ y2 = x2 ∧ y1 = 0 and then

〈x1, x2〉 ⊕ 〈y1, y2〉 = 〈x1 ∨ y1 ∨ (x2 ∧ y2), x2 ∨ y2 ∨ (x1 ∧ y1)〉.

Then DB := (B × B;⊕, 〈0, 0〉, 〈1, 1〉) is an effect algebra. In DB, we have
〈x1, x2〉 ≤ 〈y1, y2〉 if and only if x1 ≤ x2 and y1 ≤ y2. Thus, DB is the same
lattice as the “ordinary” Boolean lattice B × B. However, if B has more
than one element, DB is not an MV-effect algebra: we have 〈1, 0〉∧〈0, 1〉 = 0
but 〈1, 0〉 ⊕ 〈0, 1〉 does not exist.

It is easy to check that

〈x1, x2〉′ = 〈x′2, x′1〉
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and that
S(DB) = {〈x, x〉 : x ∈ B}.

Note that S(DB) is a Boolean algebra. This implies that S(DB) = C(DB).
Since, for |B| > 1, there are unsharp elements in DB, DB is not an ortho-
modular lattice.

3. Generalized test spaces

In this section, we present a slightly generalized version of the notion
of test space, originally introduced by Foulis and Randall in [11] and [29].
Despite of its relative simplicity, the notion of test space (and its general-
izations) is a very useful tool for construction of orthoalgebras and effect
algebras. See for example [8], [6], or [19] for constructions that use test
spaces.

Let X be a nonempty set, let N , T ⊆ 2X . We say that a triple (X, T ,N )
is a generalized test space if and only if the following conditions are satisfied.

(GTS1) X =
⋃

t∈T t.

(GTS2) N is an ideal of 2X , that is, N is nonempty and for all o1,o2 ⊆ X we
have o1 ∪ o2 ∈ N if and only if o1,o2 ∈ N .

(GTS3) For all t1 ⊆ t2 ⊆ X such that t1 ∈ T , we have t2 ∈ T if and only if
t2 \ t1 ∈ N .

(GTS4) For all t1 ⊆ t2 ⊆ X such that t2 \ t1 ∈ N , we have t1 ∈ T if and only
if t2 ∈ T .

A generalized test space is a test space if and only if N = {∅}. For a test
space, the axioms (GTS2) and (GTS4) collapse to tautologies and (GTS3)
transforms to

(TS) If t1, t2 ∈ T and t1 ⊆ t2, then t1 = t2.

(GTS1) and (TS) are the original axioms of a test space.

Example 3.1. Let X be the system of all measurable subsets of the real
interval [0, 1]R, let T be the set of all finite systems t ⊆ X such that the
elements of t are measurable, pairwise disjoint and µ(

⋃̇
A∈tA) = 1. Let N

be the set of all finite pairwise disjoint systems of sets with zero measure.
Then (X, T ,N ) is a generalized test space.

Throughout this section, we assume that (X, T ,N ) is a generalized test
space.

An element of T is called a test. Since X is nonempty, (GTS1) implies
that there is at least one test. We say that a subset f of X is an event if
and only if there is a test t ∈ T such that f ⊆ t.
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Lemma 3.2. Every element of N is an event.

Proof. Let t1 be a test, let o ∈ N . Put t2 := t1∪o. We have t2\t1 ⊆ o ∈ N .
Since N is an ideal of sets, t2 \ t1 ∈ N . By (GTS3), t1 ∈ T and t2 \ t1 ∈ N
imply that t2 is a test. Thus, o ⊆ t2 is an event.

The elements of N are called null events.
We say that two events f ,g of a generalized test space (X, T ,N ) are

(i) orthogonal (in symbols f ⊥ g) if and only if f ∩ g ∈ N and f ∪ g is an
event.

(ii) local complements (in symbols f loc g) if and only if f ∩ g ∈ N and
f ∪ g is a test.

(iii) perspective (in symbols f ∼ g) if and only if they share a local com-
plement.

Note that every pair of tests is perspective, since ∅ is a local complement
of every test.

Lemma 3.3. For an event f we have f ∼ ∅ if and only if f ∈ N .

Proof. Suppose that f ∼ ∅. There is a test t such that f loc t. Since f ∪ t is
a test, (GTS3) implies that f ∪ t \ t = f \ f ∩ t is a null event. Since f loc t,
f ∩ t is a null event. Therefore, f = (f \ f ∩ t) ∪ (f ∩ t) is a null event.

Suppose that f ∈ N . Since f is an event, there is a test t ⊇ f . Since
t∩ f = f ∈ N and t∪ f = t ∈ T , f loc t. Since t is a test, ∅ loc t. Therefore,
f ∼ ∅.

Lemma 3.4. Let t be a test, let f be an event such that f ∼ t. Then f is a
test.

Proof. Let h be a local complement shared by f and t. Both t ∪ h and t
are tests. By (GTS3), t ∪ h \ t ∈ N . Since t loc h, t ∩ h ∈ N . Therefore,
h = (t ∪ h \ t) ∪ (t ∩ h) ∈ N and, since f ∪ h \ f ⊆ h, f ∪ h \ f ∈ N . By
(GTS4), f ∪ h ∈ T and f ∪ h \ f ∈ N imply that f ∈ T .

We say that a generalized test space is algebraic if and only if for all
events f ,g,h we have

f ∼ g and f loc h =⇒ g loc h.

Lemma 3.5. In an algebraic generalized test space, perspectivity is transi-
tive.

Proof. Suppose that f ∼ g ∼ h. There are events u1,u2 such that f loc u1 loc g
and g loc u2 loc h. Since u2 loc h and u1 ∼ u2, u1 loc h. Therefore,
f ∼ h.
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Note that, in an algebraic generalized test space, both N and T are
equivalence classes of ∼.

Lemma 3.6. In an algebraic generalized test space, f1 ∼ f2 and f1 ⊥ g
imply that f2 ⊥ g and f1 ∪ g ∼ f2 ∪ g.

Proof. Let h be a local complement of f1 ∪g. Since f1 loc h∪g and f1 ∼ f2,
f2 loc h ∪ g. This implies that f2 ⊥ g. Moreover, as f1 ∪ g loc h loc f2 ∪ g,
f1 ∪ g ∼ f2 ∪ g.

Theorem 3.7. Let (X, T ,N ) be an algebraic generalized test space. Let E
be the set of all events of (X, T ,N ). Define on E/ ∼ a relation ⊥ and a
partial operation ⊕ with domain ⊥ in the following way: [f ]∼ ⊥ [g]∼ if and
only if f ⊥ g and then [f ]∼ ⊕ [g]∼ = [f ∪ g]∼. Then (E/ ∼,⊕,N , T ) is an
orthoalgebra.

Proof. Let us prove that ⊥ and ⊕ are well-defined. Suppose that f1 ∼ f2,
g1 ∼ g2 and that f1 ⊥ g1. By Lemma 3.6, f1 ⊥ g2 and f1 ∪ g1 ∼ f1 ∪ g2.
Again, by Lemma 3.6, this implies that f2 ⊥ g2 and f1 ∪ g2 ∼ f2 ∪ g2.

(E1) is trivially true, let us prove (E2). If both sides of the associative
equality exist, they are (obviously) equal. Suppose that ([f ]∼⊕ [g]∼)⊕ [h]∼
exists. Then f ⊥ g and ([f ]∼ ⊕ [g]∼) = [f ∪ g]∼. Therefore, f ∪ g ⊥ h and
we see that [f ]∼ ⊕ ([g]∼ ⊕ [h]∼) exists.

Let us prove (E3). Suppose that [f ]∼ ⊕ [h]∼ = [g]∼ ⊕ [h]∼, that means,
f ,g ⊥ h and f ∪ h ∼ g ∪ h; let u be a common local complement of f ∪ h
and g ∪ h. We see that h ∪ u is a common local complement of f and g,
therefore f ∼ g and [f ]∼ = [g]∼.

(E4) is trivial, let us prove (E5). For an event f , [f ]′∼ is just the set
of all local complements of f . Obviously, [f ]′∼ can be characterized by the
property [f ]∼ ⊕ [f ]′∼ = T .

The proof of (E6) is trivial.
Finally, let us prove that [f ]∼ ≤ [f ]′∼ =⇒ [f ]∼ = N : since f ⊥ f ,

f ∩ f = f ∈ N . Therefore, [f ]∼ = N and we see that (E/ ∼,⊕,N , T ) is an
orthoalgebra.

The orthoalgebra (E/ ∼,⊕,N , T ) is called the orthoalgebra of the gen-
eralized test space (X, T ,N ).

4. The generalized test space of quotients

In this section, we introduce our main tool. For every homogeneous effect
algebra E we shall construct a generalized test space Ω(E), where tests are
finite sets of comparable pairs (called quotients) with certain properties.

The origins of the notion of a quotient and the relations ↗ and ↘ lie
in the lattice theory, see for example Section III.1 of [13]. However, the
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definitions ↗ and ↘ introduced here do not coincide with their lattice-
theoretical versions, even in the case of a lattice ordered effect algebra (see
the remark following the Proposition 4.5). In the case of an MV-effect
algebra, our definitions coincide with their lattice-theoretical counterparts.

Let E be an effect algebra, let P be a subposet of E. Let a/b denote an
ordered pair of elements of P satisfying a ≥ b. We say that a/b is a quotient
of P . The set of all quotients of P is denoted by Q(P ). We say that c/d
is a subquotient of a/b (in symbols c/d v a/b or a/b w c/d) if and only if
b ≤ d ≤ c ≤ a.

If a > b, we say that a/b is proper, otherwise we say that a/b is null.
We write a/b↗ c/d if and only if a ≤ c, b ≤ d, c	 a = d	 b, (c	 a) ∧

(a	 b) = 0. We write a/b ↘ c/d if and only if c ≤ a, d ≤ b, a	 c = b	 d,
(a	 c)∧ (a	 b) = 0. It is easy to check that a/b↘ c/d or a/b↗ c/d implies
that a	 b = c	 d.

Proposition 4.1. Let E be an effect algebra, a/b, c/d ∈ Q(E). The follow-
ing are equivalent:

(i) a/b↘ c/d;

(ii) c/d↗ a/b;

(iii) b′/a′ ↗ d′/c′;

(iv) d′/c′ ↘ b′/a′.

Proof. The proofs of the equivalences (i)⇐⇒(ii) and (iii)⇐⇒(iv) are trivial.
Let us prove (i) =⇒ (iii). Since c ≤ a, a′ ≤ c′. Since d ≤ b, b′ ≤ d′. We

have
d′ 	 b′ = (d′ 	 b′)′′ = (d⊕ b′)′ = (b′ ⊕ d)′ = b	 d.

Similarly, c′ 	 a′ = a	 c and b′ 	 a′ = a	 b. Therefore,

d′ 	 b′ = b	 d = a	 c = c′ 	 a′

and

(d′ 	 b′) ∧ (b′ 	 a′) = (b	 d) ∧ (a	 b) = (a	 c) ∧ (a	 b) = 0.

Let us prove (iii) =⇒ (i). By the previous parts of the proof,

b′/a′ ↗ d′/c′ =⇒ d′/c′ ↘ b′/a′ =⇒ c/d↗ a/b =⇒ a/b↘ c/d.

Example 4.2. Let [0, 1][0,1] be the effect algebra of all real functions of real
variable [0, 1] → [0, 1]. For a/b, c/d ∈ Q([0, 1][0,1]) we have a/b↘ c/d if and
only if, for all x ∈ [0, 1], a(x) 6= c(x) or b(x) 6= d(x) imply a(x) = b(x) ≥
c(x) = d(x).
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Figure 1. a/b↘ c/d in [0, 1][0,1]

For example, we may take

a(x) = |x− 0.5|+ 0.5 c(x) = 1− x

b(x) = x d(x) = 0.5− |x− 0.5|

(see Figure 2).

Example 4.3. Let E be a 6-elements effect algebra with two atoms a, b,
satisfying a ⊕ a ⊕ a = a ⊕ b ⊕ b = 1. On Q(E), the ↘ relation is not
transitive: we have 1/a′ ↘ a ⊕ b/b and a ⊕ b/b ↘ a/0, but 1/a′ 6↘ a/0,
because a ∧ a′ = a 6= 0.

Proposition 4.4. For every homogeneous effect algebra, ↗ and ↘ are tran-
sitive.

Proof. Let E be a homogeneous effect algebra, let a/b, c/d, e/f ∈ Q(E).
Assume that a/b ↗ c/d and c/d ↗ e/f . Obviously a ≤ e and b ≤ f . We
see that

e	 a = (e	 c)⊕ (c	 a) = (f 	 d)⊕ (d	 b) = f 	 b.

Suppose that x ≤ e 	 a, a 	 b. Since e 	 a ≤ (a 	 b)′ ≤ x′ and e 	 a =
(e	 c)⊕ (c	 a), we obtain

x ≤ (e	 c)⊕ (c	 a) ≤ x′.

Since E is homogeneous, there exist x1 ≤ e	 c and x2 ≤ c	a such that x =
x1⊕x2. However, as c	d = a	b, we have (e	c)∧(c	d) = (e	c)∧(a	b) = 0
and thus x1 ≤ e 	 c, a 	 b implies that x1 = 0. As x2 ≤ c 	 a, a 	 b and
(c	a)∧ (a	 b) = 0, x2 = 0. Therefore, (e	a)∧ (a	 b) = 0 and a/b↗ e/f ,

Assume that a/b ↘ c/d and c/d ↘ e/f . By Proposition 4.1, this is
equivalent to b′/a′ ↗ d′/c′ and d′/c′ ↗ f ′/e′. Since ↗ is transitive, b′/a′ ↗
f ′/e′ and hence a/b↘ e/f .

Proposition 4.5. Let E be a lattice ordered effect algebra, let a/b, c/d ∈
Q(E). Then
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(i) a/b↗ c/d if and only if a↔ d, a ∨ d = c, a ∧ d = b.

(ii) a/b↘ c/d if and only if c↔ b, c ∨ b = a, c ∧ b = d.

Proof.

(i) Suppose that a/b ↗ c/d. Since (c 	 a) ⊕ (a 	 b) ⊕ b exists, the set
{c 	 a, a 	 b, b} is compatible and can be embedded into a block M .
As a = (a 	 b) ⊕ b, a ∈ M . Since c 	 a = d 	 b, we see that d =
(d	 b)⊕ b = (c	 a)⊕ b ∈M . Therefore, a↔ d. We see that

c	 (a ∨ d) = (c	 a) ∧ (c	 d) = (d	 b) ∧ (a	 b) = 0.

Therefore, c = a ∨ d. Since a↔ d and c	 d = a	 b,

c	 d = (a ∨ d)	 d = a	 (a ∧ d) = a	 b.

Therefore, a ∧ d = b.

Suppose that a ↔ d, a ∨ d = c, a ∧ d = b. Obviously, a ∧ d ≤ a and
d ≤ a∨ d. Since a↔ d, (a∨ d)	 a = d	 (a∧ b) and it is easy to check
that [a	 (a ∧ d)] ∧ [d	 (a ∧ d)] = 0.

(ii) This follows from (i) by a permutation of {a, b, c, d}.

Remark. In lattice theory, the relation ↗ is defined by the rule

a/b↗ c/d⇐⇒ a ∨ d = c and a ∧ d = b

and↘ is defined in a dual way. By Proposition 4.5, our “effect-algebraic ↗”
is more restrictive than the original lattice-theoretical ↗. Both definition
coincide for MV-effect algebras, because in this case the additional condition
a↔ d is clearly satisfied.

In what follows, the symbol ≡ denotes the transitive closure of (↘ ∪ ↗).
Obviously, ≡ is an equivalence relation.

Example 4.6. Let a/b, c/d ∈ Q([0, 1][0,1]). We have a/b ≡ c/d if and only
if for all x ∈ [0, 1]

a(x) 6= c(x) or b(x) 6= d(x) =⇒ a(x) = b(x) and c(x) = d(x).

We say that quotients a/b and c/d are disjoint if and only if for all for
all x/y and z/w,

a/b w x/y ≡ z/w v c/d =⇒ x = y.

We say that a/b and c/d are orthogonal (in symbols a/b ⊥ c/d) if and
only if a/b and c/d are disjoint and (a 	 b) ⊕ (c 	 d) exists in E. We say
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Figure 2. a/b ⊥ c/d in [0, 1][0,1]

that a finite set f of quotients is pairwise orthogonal if and only if any two
distinct elements of f are orthogonal. We say that a finite set of quotients
f = {a1/b1, . . . , an/bn} is orthogonal if and only if f is pairwise orthogonal
and the sum

|f | := (a1 	 b1)⊕ · · · ⊕ (an 	 bn)

exists in E.

Example 4.7. In [0, 1][0,1], we have a/b ⊥ c/d if and only if, for all x ∈ [0, 1],
the intervals (b(x), a(x)] and (d(x), c(x)] are disjoint.

Example 4.8. In an orthoalgebra, we have a/b ⊥ c/d if and only if (a 	
b)⊕ (c	 d) exists.

Note that, for a/b ↗ c/d and x/y v a/b, there is x0/y0 v c/d with
x/y ↗ x0/y0. Indeed, we may put x0 = x ⊕ (c 	 a) and y0 = y ⊕ (c 	 a).
There is an analogous relationship between ↘ and v.

Proposition 4.9. Let E be a homogeneous effect algebra, let a/b, c/d, e/f ∈
Q(E). If a/b ≡ c/d and c/d is disjoint with e/f , then a/b is disjoint with
e/f .

Proof. Suppose that a/b ↗ c/d. Let x/y and z/w be such that a/b w
x/y ≡ z/w v e/f . There is x0/y0 v c/d with x/y ↗ x0/y0. However, since
c/d w x0/y0 ≡ z/w v e/f . and c/d, e/f are disjoint, x0 = y0 and hence
x = y.

Similarly, a/b ↘ c/d implies that a/b is disjoint with e/f . The rest of
the proof is a simple induction.

Let E be a homogeneous effect algebra. Let us extend the relation ≡ to
the set of all finite subsets of Q(E): for two finite sets of quotients f and
g we write f ≡ g if and only if the following symmetric pair of condition is
satisfied.

• For every proper a/b ∈ f there is exactly one c/d ∈ g such that
a/b ≡ c/d.
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• For every proper a/b ∈ g there is exactly one c/d ∈ f such that
a/b ≡ c/d.

It is obvious that ≡ is an equivalence relation on the set of all finite sets of
quotients. Note that f ≡ ∅ if and only if f contains only null quotients.

Lemma 4.10. Let E be a homogeneous effect algebra, let f ,g be finite sets
of quotients. If f ≡ g and f is (pairwise) orthogonal, then g is (pairwise)
orthogonal.

Proof. Suppose that f is pairwise orthogonal. Let a1/b1, a2/b2 ∈ g, a1/b1 6=
a2/b2. If one of a1/b1, a2/b2 is null, then a1/b1 ⊥ a2/b2, so let us assume that
both a1/b1, a2/b2 are proper. Since f ≡ g, there are c1/d1, c2/d2 ∈ f such
that c1/d1 ≡ a1/b1, c2/d2 ≡ a2/b2 and c1/d1 6= c2/d2. Since f is pairwise
orthogonal, c1/d1 ⊥ c2/d2. Therefore, a1/b1 ⊥ a2/b2.

Suppose that f is orthogonal. Then g is pairwise orthogonal and it
remains to observe that the elements occurring in the sum |f | are (up to
some zeros) the same as the elements occurring in the sum |g|. Therefore,
g is orthogonal.

Lemma 4.11. Let E be a homogeneous effect algebra, let f = {a1/b1, . . . , an/bn} ⊆
Q(E) be a pairwise orthogonal n-element set. Let g = {c1/d1, . . . , cn/dn} ⊆
Q(E) be a finite set such that, for all i ∈ {1, . . . , n}, ci/di ≡ ai/bi. Then
f ≡ g.

Proof. We have to prove that, for proper aj/bj and ci/di, aj/bj ≡ ci/di

implies that i = j. Suppose that i 6= j. Since f is pairwise orthogonal,
ai/bi ⊥ aj/bj . However, ai/bi ≡ ci/di ≡ aj/bj . Therefore, ai/bi ≡ aj/bj and
this is a contradiction with ai/bi ⊥ aj/bj .

Note that we cannot omit the assumption that f is pairwise orthogonal
from Lemma 4.11. To see this, let f = {a1/b1, a2/b2} be such that a1/b1 ≡
a2/b2, a1/b1 is proper. Then for g = {a1/b1, a1/b1} we have g 6≡ f .

Let E be a homogeneous effect algebra. Let T be the set of all finite
orthogonal sets t ⊆ Q(E) with |t| = 1 and let N be the set of all finite sets
of null quotients. It is evident that the triple Ω(E) := (Q(E), T ,N ) forms a
generalized test space. Note that, for all events f ,g of Ω(E), f ≡ g implies
that f ∼ g.

The main aim of the following two sections of this paper is to prove the
following theorem.

Theorem 4.12. Let E be a complete lattice ordered effect algebra. Let f be
a finite set of quotients of E. Then the following are equivalent:

(a) f is an event of Ω(E);

(b) f is an orthogonal set of quotients;
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(c) f is a pairwise orthogonal set of quotients.

It will then turn out that Ω(E) is an algebraic generalized test space.
Later we shall prove that the orthoalgebra O(E) of Ω(E) is actually an
orthomodular lattice with the same block structure as E.

5. Reduced quotients

Let E be an effect algebra, let a/b ∈ Q(E). We say that a/b is a reduced
quotient if and only if

a/b↘ c/d =⇒ a/b = c/d.

Note that a/b is reduced if and only if x ≤ b and x∧(a	b) = 0 imply x = 0.
A null quotient a/a is reduced if and only if a = 0. In an orthoalgebra,

a proper quotient a/b is reduced if and only if b = 0. On the other hand, in
a totally ordered effect algebra every proper quotient is reduced.

We say that a finite set {a1/b1, . . . , an/bm} of quotients is compatible if
and only if {a1, b1, . . . , an, bn} is a compatible set.

The aim of this section is to show that for every pairwise orthogonal
finite set f of quotients in a complete lattice ordered effect algebra there
exists a compatible pairwise orthogonal finite set fR of reduced quotients
with f ≡ fR.

Example 5.1. A quotient a/b ∈ Q([0, 1][0,1]) is reduced if and only if

a(x) = b(x) =⇒ a(x) = b(x) = 0.

An effect algebra E is sharply dominating if and only if, for every element
x,

x↑ :=
∧
{t : t ∈ [x, 1] ∩ S(E)}

exists and is sharp. It is easy to see that in a sharply dominating effect
algebra E, the element

x↓ :=
∨
{t : t ∈ [0, x] ∩ S(E)}

exists and is sharp, for all x. Moreover, we have x↑′ = x′↓ and x↓′ = x′↑.
We say that x↑ is the sharp cover of x and that x↓ is the sharp kernel of x.
In his paper [3], Cattaneo proved that for every sharply dominating effect
algebra the set of all sharp elements forms a subeffect algebra, which is an
orthoalgebra. See [16] for another version of the proof.

Example 5.2. The lattice ordered effect algebra DB from example 2.4 is
sharply dominating, even if B is incomplete. We have

〈x1, x2〉↑ = 〈x1 ∨ x2, x1 ∨ x2〉 and

〈x1, x2〉↓ = 〈x1 ∧ x2, x1 ∧ x2〉.
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We say that an effect algebra E is orthocomplete if and only if every
chain has a supremum in E. See [23] and [22] for results on orthocomplete
effect algebras. A lattice ordered effect algebra is orthocomplete if and only
if it is a complete lattice.

Proposition 5.3. ([21], Corollary 5) Every orthocomplete homogeneous ef-
fect algebra is sharply dominating. Moreover, for every block M , x ∈ M
implies that [x↓, x], [x, x↑] ⊆M .

Since all complete lattice ordered effect algebras are orthocomplete and
homogeneous, we may apply Proposition 5.3 for them. Note that Proposi-
tion 5.3 implies that every subset of a complete lattice ordered effect algebra
of the form [x↓, x] ∪ [x, x↑] is compatible.

Lemma 5.4. Let E be a complete lattice ordered effect algebra. For all
y ∈ E, y′↓ = y↑′ is the greatest element of the set

{x ∈ E : x ≤ y′ and y ∧ x = 0}. (8)

Proof. Let us prove that y′↓ is the upper bound of the set (8). For every x,
x ≤ y′. Therefore, x ↔ y and there is a block M ⊇ {y, x}. By Lemma 1
of [21], y ∧ x = 0 implies that y↑ ∧ x = 0. Since M is an MV-effect algebra,
this implies that x ≤ y↑′ = y′↓.

Since y′↓ ≤ y′ and

y ∧ y′↓ = y ∧ y↑′ ≤ y↑ ∧ y↑′ = 0,

y′↓ belongs to (8).

Proposition 5.5. Let E be a complete lattice ordered effect algebra, let
a/b ∈ Q(E). The following are equivalent:

(i) a/b is reduced;

(ii) b ∧ (a	 b)↑′ = 0;

(iii) a ≤ (a	 b)↑;

(iv) b ≤ (a	 b)↑ 	 (a	 b).

Proof.
(i) =⇒ (ii): Suppose that x ≤ b, x ≤ (a	 b)↑′. Since x ≤ b, x ≤ (a	 b)′.

By Lemma 5.4, x ≤ (a 	 b)↑′ implies that x ∧ (a 	 b) = 0. Since a/b is
reduced, this implies that x = 0.

(ii) =⇒ (iii): Let M be a block of E with a, b ∈M . By Proposition 5.3,
(a	 b)↑ ∈ M and hence (a	 b)↑′ ∈ M . Since (a	 b)↑′ is sharp, (a	 b)↑′ is
central in M . Thus, we may compute

a∧ (a	 b)↑′ =
(
(a	 b)⊕ b

)
∧ (a	 b)↑′ =

(
(a	 b)∧ (a	 b)↑′

)
⊕

(
b∧ (a	 b)↑′

)
.
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By Lemma 5.4, (a	b)∧(a	b)↑′ = 0. By assumption, b∧(a	b)↑′ = 0. Since
a ∧ (a	 b)↑′ = 0 and M is an MV-effect algebra, a ≤ (a	 b)↑′′ = (a	 b)↑.

(iii) =⇒ (iv): We see that a = (a 	 b) ⊕ b ≤ (a 	 b)↑, hence b ≤
(a	 b)↑ 	 (a	 b).

(iv) =⇒ (i): Suppose that x ≤ b, x ∧ (a 	 b) = 0. Since x ≤ b ≤
(a	b)↑	(a	b), x ≤ (a	b)′. By Lemma 5.4, x ≤ (a	b)′ and x∧(a	b) = 0
imply x ≤ (a	 b)′↓ = (a	 b)↑′. Since (a	 b)↑ ∧ (a	 b)↑′ = 0, x = 0.

The following lemma is crucial.

Lemma 5.6. Let E be a complete lattice ordered effect algebra. Let a/b be
a reduced quotient of E and let M be a block of E with a 	 b ∈ M . Then
a, b ∈M .

Proof. By Proposition 5.5, a ≤ (a	b)↑. This implies that a ∈ [a	b, (a	b)↑].
Therefore, by Proposition 5.3, a ∈M . Since a, (a	b) ∈M , b = a	(a	b) ∈
M .

Corollary 5.7. Let E be a complete lattice ordered effect algebra, let f be a
finite set of reduced quotients of E such that {a	 b : a/b ∈ f} is compatible.
Then f is a compatible set of quotients.

Proof. Let a/b, c/d ∈ f . Since a 	 b ↔ c 	 d, there exists a block M with
a 	 b, c 	 d ∈ M . By Lemma 5.6, a, b, c, d ∈ M . Therefore, {a/b, c/d} is a
compatible set of quotients. Thus, f is a compatible set of quotients.

Corollary 5.8. Every reduced pairwise orthogonal finite set of quotients of
a complete lattice ordered effect algebra is compatible.

Proof. By Corollary 5.7.

Example 5.9. If a/b is a quotient of [0, 1][0,1], then aR/bR is given by

aR(x) =

{
a(x) if a(x) > b(x),
0 if a(x) = b(x),

bR(x) =

{
b(x) if a(x) > b(x),
0 if a(x) = b(x).

(See Figure 3)

Let E be a complete lattice ordered effect algebra. Let us introduce a
mapping R : Q(E) → Q(E), given by a/b 7→ aR/bR, where aR = a∧ (a	 b)↑
and bR = b ∧ (a	 b)↑. We say that aR/bR is the reduct of a/b.

Proposition 5.10. Let E be a complete lattice ordered effect algebra, For
every a/b ∈ Q(E), a/b↘ aR/bR and aR/bR is reduced.
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Figure 3. a/b and aR/bR in [0, 1][0,1]

Proof. Obviously, aR ≤ a and bR ≤ b. Let M be a block with a, b ∈M . By
Proposition 5.3, (a	 b)↑ ∈M . Since (a	 b)↑ is sharp, (a	 b)↑ is central in
M . Therefore,

a	 aR = a	
(
a ∧ (a	 b)↑

)
= a ∧ (a	 b)↑′ =

(
b⊕ (a	 b)

)
∧ (a	 b)↑′ =

=
(
b ∧ (a	 b)↑′

)
⊕

(
(a	 b) ∧ (a	 b)↑′

)
= b ∧ (a	 b)↑′ =

= b	
(
b ∧ (a	 b)↑

)
= b	 bR.

Moreover,

(a	 b) ∧ (a	 aR) = (a	 b) ∧ a ∧ (a	 b)↑′ = 0.

Let us prove that aR/bR is reduced. By Proposition 5.5, this is equivalent
to bR ∧ (aR 	 bR)↑′ = 0. Since a/b↘ aR/bR, a	 b = aR 	 bR. Thus,

bR ∧ (aR 	 bR)↑′ = b ∧ (a	 b)↑ ∧ (a	 b)↑′ = 0.

Proposition 5.11. Let E be a complete lattice ordered effect algebra, let
a/b, c/d ∈ Q(E). Then a/b ≡ c/d if and only if aR/bR = cR/dR.

Proof. If aR/bR = cR/dR, then a/b↘ aR/bR = cR/dR ↗ c/d.
Suppose that a/b ↗ c/d. By Proposition 4.5, a ↔ d so there is a block

M with {a, b, c, d} ⊆M . By Proposition 5.3, (c	 d)↑ ∈M ∩S(E) = C(M).
Therefore,

cR = c ∧ (c	 d)↑ =
(
(c	 a)⊕ a

)
∧ (c	 d)↑ =

=
(
(c	 a) ∧ (c	 d)↑

)
⊕

(
a ∧ (c	 d)↑

)
.

By Lemma 5.4, c 	 a ≤ (c 	 d)′ and (c 	 a) ∧ (c 	 d) = 0 imply that
c	 a ≤ (c	 d)′↓ = (c	 d)↑′. Therefore, (c	 a) ∧ (c	 d)↑ = 0 and

cR = a ∧ (c	 d)↑ = a ∧ (a	 b)↑ = aR.

As a consequence, dR = cR 	 (c	 d) = aR 	 (a	 b) = bR.
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Let E be a complete lattice ordered effect algebra. For a finite n-element
set f = {a1/b1, . . . , an/bn} we write fR = {aR

1 /b
R
1 , . . . , a

R
n /b

R
n }.

Proposition 5.12. Let E be a complete lattice ordered effect algebra. Let
f be a finite pairwise orthogonal set of quotients. Then f ≡ fR and fR is
pairwise orthogonal compatible set of quotients.

Proof. By Lemma 4.11, f ≡ fR. By Lemma 4.10, fR is pairwise orthogonal.
By Corollary 5.7, fR is compatible.

6. Compatible sets of quotients

In this section we are going to prove a restriction of Theorem 4.12 for
compatible events. (Proposition 6.6.) Using Proposition 5.12, it is then
possible to extend the result to the general case.

Let D be a bounded distributive lattice. Up to isomorphism, there exists
a unique Boolean algebra B(D) such that D is a 0, 1-sublattice of B(D) and
D generates B(D) as a Boolean algebra. This Boolean algebra is called
R-generated Boolean algebra. We refer to [13], section II.4, for an overview
of results concerning R-generated Boolean algebras. See also [17] and [27].
For every element x of B(D), there exists a finite chain x1 ≤ . . . ≤ xn in D
such that x = x1 + . . .+xn. Here, + denotes the symmetric difference, as in
Boolean rings. We then say than {xi}n

i=1 is a D-chain representation of x.
It is easy to see that every element of B(D) has a D-chain representation of
even length.

Note that, if D1 is a 0, 1-sublattice of a distributive lattice D2, then
B(D1) is a subalgebra of B(D2).

Lemma 6.1. (Lemma 7 of [20]). Let L be a finite 0, 1-sublattice of an
MV-effect algebra M . The mapping φL : B(L) →M given by

φL(x) =
n⊕

i=1

(x2i 	 x2i−1), (9)

where {xi}2n
i=1 is a L-chain representation of x, is a faithful surjective ho-

momorphism of effect algebras. The value of φL(x), as given by (9), does
not depend on the choice of {xi}2n

i=1.

Note that, since every compatible 0, 1-sublattice L of a lattice ordered
effect algebra is a sublattice of some block M , Lemma 6.1 is true even if
we merely suppose that L is a compatible 0, 1-sublattice of a lattice ordered
effect algebra.

Let L be a lattice. An element a of L is join-irreducible if and only if
a = b ∨ c implies that a = b or a = c; it is meet-irreducible if and only
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if a = b ∧ c implies that a = b or a = c. The set of all nonzero join-
irreducible elements of a lattice L is denoted by J(L), the set of all non-unit
meet-irreducible elements of a lattice L is denoted by M(L).

Let L be a finite distributive lattice. Then the mapping r : L → 2J(L)

given by r(x) = {a ∈ J(L) : a ≤ x} is a 0, 1-embedding of L into 2J(L).
Since, for every finite distributive lattice L, r(L) R-generates 2J(L), the
injective mapping r : L → 2J(L) uniquely extends to an isomorphism of
Boolean algebras r̂ : B(L) → 2J(L).

In what follows, �P denotes the usual covering relation on a poset P ,
that means, a �P b if and only if b is a maximal element of the set {x ∈
P : x < a}. In a finite distributive lattice L, we have a �L b if and only if
r̂(a) \ r̂(b) is a singleton.

Let L be a finite distributive lattice. We have a ∈ J(L) if and only if
there is a unique b such that a �L b. Therefore, {a+ b : a �L b, a ∈ J(L)}
is the set of all atoms of B(L).

Let L be a finite 0, 1-sublattice of a lattice ordered effect algebra E,
and let f = {a1/b1, . . . , an/bm} be a compatible set of quotients such that
f ⊆ Q(L). We write

+f = a1 + b1 + · · ·+ an + bn,

where the + on the right-hand side is taken in B(L).

Lemma 6.2. Let E be a complete lattice ordered effect algebra, let {a/b, c/d}
be compatible. Let L ⊇ {a, b, c, d} be a finite compatible 0, 1-sublattice of E.
Then a/b ≡ c/d implies that a+ b = c+ d in B(L).

Proof. By Proposition 5.11, a/b ≡ c/d implies that aR/bR = cR/dR. Let M
be a block of E such that L ⊆M . Since a	 b ∈M , Lemma 5.6 implies that
aR/bR ∈ Q(M). Therefore, {a/b, c/d, aR/bR = cR/dR} is a compatible set
of quotients. Let L1 be a finite compatible lattice such that L ⊆ L1 ⊆ M ,
{aR, bR} ⊆ L1.

By Proposition 5.10, a/b↘ aR/bR. By Proposition 4.5, b ∨ aR = a and
b ∧ aR = bR. Therefore, we may calculate in B(L1)

a+ b = (b ∨ aR) + b = aR + (b ∧ aR) = aR + bR

Similarly, c/d↘ cR/dR implies that c+ d = cR + dR. Therefore,

a+ b = aR + bR = cR + dR = c+ d

in B(L1) and, since B(L) is a subalgebra of B(L1), a+b = c+d in B(L).

Proposition 6.3. Let E be a complete lattice ordered effect algebra, let
{a/b, c/d} be compatible. Let L ⊇ {a, b, c, d} be a finite compatible 0, 1-
sublattice of E. Suppose that a �L b. Then a/b ≡ c/d if and only if
a+ b = c+ d in B(L).
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Proof. Suppose that a + b = c + d. Since a �L b, r̂(a) \ r̂(b) is a singleton.
Let e ∈ r̂(a) \ r̂(b). Since e is join-irreducible and nonzero, there is a single
element f ∈ L such that e �L f . We claim that a/b↘ e/f . Indeed,

a ∧ (b ∨ e) = (a ∧ b) ∨ (a ∧ e) = b ∨ e,

hence a ≥ b ∨ e ≥ b. Since a �L b, we have either b ∨ e = a or b ∨ e = b.
However, b ∨ e = b implies that e ∈ r̂(b), which contradicts e ∈ r̂(a) \ r̂(b).
Therefore, b ∨ e = a.

Since L is distributive, the intervals [b, b∨e] and [b∧e, e] are isomorphic.
As b ∨ e = a �L b, e �L b ∧ e. Since e is join-irreducible and nonzero, e
covers exactly one element, hence b ∧ e = f . We have proved that b ∨ e = a
and a ∧ e = f . By Proposition 4.5, a/b↘ e/f .

Since a+ b = c+ d, r̂(a) \ r̂(b) = r̂(c) \ r̂(d) and r̂(c) \ r̂(d) is a singleton.
This implies that c �L d and, similarly as for a/b, c/d ↘ e/f . Therefore,
a/b↘ e/f ↗ c/d and a/b ≡ c/d.

The opposite implication follows by Lemma 6.2.

Lemma 6.4. Let E be a complete lattice ordered effect algebra, let {a/b, c/d}
be compatible. Let L ⊇ {a, b, c, d} be a finite compatible 0, 1-sublattice of E.
Then a/b and c/d are orthogonal if and only if a + b, c + d are disjoint in
B(L).

Proof. Suppose that a/b and c/d are orthogonal and that a + b, c + d are
not disjoint in B(L). Then there exists e ∈

(
r̂(a) \ r̂(b)

)
∩

(
r̂(c) \ r̂(d)

)
.

Let a0/b0, . . . an/bn and c0/d0, . . . , ck/dk be sequences of quotients of L
such that

a = a0 �L b0 = a1 �L b1 = a2 �L · · · �L bn−1 = an �L bn = b

and

c = c0 �L d0 = c1 �L d1 = c2 �L · · · �L dk−1 = ck �L dk = d.

In 2J(L), we have

r̂(a) \ r̂(b) = ∪̇n
i=0

(
r̂(ai) \ r̂(bi)

)
and similarly for r̂(c) \ r̂(d). Therefore, e ∈

(
r̂(ai) \ r̂(bi)

)
∩

(
r̂(cj) \ r̂(dj)

)
for some i, j. Since ai �L bi and cj �L dj , this implies that r̂(ai) \ r̂(bi) =
r̂(cj)\ r̂(dj), that means, ai +bi = cj +dj . By Proposition 6.3, ai/bi ≡ cj/dj .
This contradicts a/b ⊥ c/d.

Suppose that a+ b and c+ d are disjoint in B(L). Let x/y, z/w ∈ Q(E)
be such that

a/b w x/y ≡ z/w v c/d.
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Obviously {a, b, x, y} and {c, d, z, w} are compatible sets. Since x 	 y =
z 	 w ≤ a, c and x 	 y = z 	 w ≤ b′, d′, {a, b, c, d, x 	 y = z 	 w} is
compatible as well. By Lemma 5.6, this implies that the sets of quotients

f1 := {a/b, x/y, aR/bR, xR/yR},
f2 := {c/d, z/w, cR/dR, zR/wR}, and

g := {a/b, c/d, aR/bR, cR/dR, xR/yR}.

are compatible. Moreover, by Proposition 5.11, xR/yR = zR/wR. Let L1, L2

and K be finite compatible 0, 1-sublattices of E such that f1 ⊆ Q(L1),
f2 ⊆ Q(L2) and g ⊆ Q(K).

Obviously, a+ b ≥B(L1) x+ y. By Lemma 6.2, a+ b =B(L1) a
R + bR and

x+y =B(L1) x
R+yR. Therefore, aR+bR ≥B(L1) x

R+yR. Since B(L1∩K) is
a subalgebra of B(L1), we have aR +bR ≥B(L1∩K) x

R +yR. Since B(L1∩K)
is a subalgebra of B(K), the implies that aR + bR ≥B(K) x

R +yR. Similarly,
cR + dR ≥B(K) z

R + wR = xR + yR. Since a + b and c + d are disjoint in
B(L), they are disjoint in B(L ∩ K) and hence also in B(K). By Lemma
6.2, aR + bR =B(K) a + b and cR + dR =B(K) c + d. Thus, aR + bR and
cR + dR are disjoint elements of B(K). This implies that xR + yR = 0, so
xR = yR and hence x = y.

Proposition 6.5. Let E be a complete lattice ordered effect algebra. Let
f = {a1/b1, . . . , an/bn} ⊆ Q(E) be a compatible set of quotients. Let L be
a finite compatible 0, 1-sublattice of E with {a1, b1, . . . , an, bn} ∈ L. Then f
is orthogonal if and only if, for all i 6= j, ai + bi and aj + bj are disjoint in
B(L).

Proof.
(⇒): By Lemma 6.4.
(⇐): By Lemma 6.4, the elements of f are pairwise disjoint. It remains

to prove that
|f | = (a1 	 b1)⊕ · · · ⊕ (an 	 bn)

exists. By assumption, the sum

(a1 + b1)⊕ · · · ⊕ (an + bn)

exists in the effect algebra B(L). Since φL is a morphism of effect algebras,
the sum

φL(a1 + b1)⊕ · · · ⊕ φL(an + bn)

exists in E. In remains to observe that, for all i, φL(ai + bi) = ai 	 bi.

It is now clear that, for every finite compatible 0, 1-sublattice L of a
complete lattice ordered effect algebra E,

{a/b : a �L b, a ∈ J(L)}
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is a compatible test of Ω(E). On the other hand, for a finite compatible and
orthogonal set of quotients f = {a1/b1, . . . , an/bn} we have

+f = (a1 + b1)∨̇ . . . ∨̇(an + bn)

in every B(L) with f ⊆ Q(L), where L is a finite compatible 0, 1-sublattice
of E.

Proposition 6.6. Let E be a complete lattice ordered effect algebra. Let f be
a finite compatible set of quotients of E. Then the following are equivalent:

(a) f is an event of Ω(E);

(b) f is an orthogonal set of quotients;

(c) f is pairwise orthogonal.

Proof. (a) =⇒ (b) and (b) =⇒ (c) follow by definition.
(c) =⇒ (a): We shall prove that there exists a compatible and orthogonal

finite set t ⊇ f with |t| = 1. Let f = {a1/b1, . . . , an/bn}. Let L be a finite
compatible 0, 1-sublattice of E with {a1, b1, . . . , an, bn} ⊆ L. Let (ci)2k

i=1 be
an L-chain representation of the complement of a1 + b1 + · · · + an + bn in
B(L). By Proposition 6.5,

t = {a1/b1, . . . , an/bn, c2/c1, . . . , c2k/c2k−1}

is orthogonal. By Lemma 6.1, we have |t| = 1.

Corollary 6.7. Let E be a complete lattice ordered effect algebra. Let f ⊆
Q(E) and g ⊆ Q(E) be events of Ω(E) such that f ∪ g is compatible. Let
L be a finite compatible 0, 1-sublattice of E with f ,g ⊆ Q(L). Then f ⊥ g
if and only if +f ⊥B(L) +g and f loc g if and only if +f ⊥B(L) +g and
φL

(
(+f)∨̇(+g)

)
= 1.

Proof. By Propositions 6.5 and 6.6.

Proof of Theorem 4.12. Let f be a finite pairwise orthogonal set of quo-
tients. Since f ≡ fR, fR is pairwise orthogonal. By Corollary 5.8, fR is
compatible. By Proposition 6.6, fR is an event of Ω(E), therefore there
exists a test t0 ⊇ fR Put t = f ∪ (t0 \ fR). By Lemma 4.11, t ≡ t0. By
Lemma 4.10, t is a test.

Proposition 6.8. Let E be a complete lattice ordered effect algebra, let f ,g
be events of Ω(E). Then f ⊥ g if and only if for all x/y ∈ f and z/w ∈ g
we have x/y ⊥ z/w.

Proof. f ⊥ g if and only if f ∩ g ∈ N and f ∪ g is an event of Ω(E). The
rest follows by Theorem 4.12.
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7. Ω(E) is algebraic

Let f be a finite orthogonal set of quotients, let z/w ∈ Q(E). We say
that z/w is covered by f if and only if there are z1/w1, . . . , zn/wn such that

• z = z1,

• wn = w,

• for all 1 ≤ i < n, wi = zi+1,

• for all 1 ≤ i ≤ n, there are c/d and e/f such that zi/wi ≡ c/d v e/f ∈
f .

Proposition 7.1. Let E be a complete lattice ordered effect algebra, let t be
a test of Ω(E). Let z/w be such that, for all e/f ∈ t, z 	 w ↔ e	 f . Then
z/w is covered by t.

Proof. Let us write t = {e1/f1, . . . , em/fm}. By Corollary 5.7, tR∪{zR/wR}
is a compatible set of quotients. Let L be a finite compatible 0, 1-sublattice
of E with tR ∪ {zR/wR} ⊆ Q(L). By Lemma 6.1,

φL

(
(eR1 + fR

1 )∨̇ . . . ∨̇(eRm + fR
m)

)
= (eR1 	 fR

1 )⊕ · · · ⊕ (eRm 	 fR
m) = |t| = 1.

Since φL is faithful, this implies that (eR1 + fR
1 )∨̇ . . . ∨̇(eRm + fR

m) = 1. Let
z1/w1, . . . , zn/wn ⊆ Q(L) be such that

• zR = z1,

• wn = wR,

• for all 1 ≤ i < n, zi = wi+1,

• for all 1 ≤ i ≤ n, zi �L wi.

In B(L), we have

zR + wR = (z1 + w1)∨̇ . . . ∨̇(zn + wn).

Since each zi +wi is an atom of B(L), we see that for every 1 ≤ i ≤ n there
exists some 1 ≤ j ≤ m such that zi + wi ≤ eRj + fR

j . Therefore, there are
c, d ∈ L such that zi +wi = c+ d and eRj ≥ c � d ≥ fR

j . By Proposition 6.3,
zi/wi ≡ c/d.

Since zR/wR is covered by tR, z/w is covered by t.

Theorem 7.2. For every complete lattice ordered effect algebra E, Ω(E) is
an algebraic generalized test space.
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Proof. Let f ,g,h be such that f ∼ g, g loc h. We shall prove that f loc h.
There is an event u such that f loc u and g loc u. Since |f | ⊕ |h| = 1, it

suffices to prove that every pair of quotients a/b ∈ f and c/d ∈ h is disjoint.
Assume the contrary and let x/y, z/w be proper quotients such that

a/b w x/y ≡ z/w v c/d.

Since (x	 y) ⊕ |u|, (z 	 w) ⊕ |g| exist and x	 u = z 	 w, we see that,
for all e/f ∈ u ∪ g, x	 y = z 	 w ≤ (e	 f)′. Therefore, x	 y = z 	 w ↔
e	 f . By Proposition 7.1, this implies that x/y is covered by the test u∪g.
However, since x/y v a/b ∈ f ⊥ u, x/y is disjoint with every element of u.
Therefore, x/y is covered by g. In particular, there exists a proper quotient
x1/y1 v x/y such that x1/y1 v p/q for some p/q ∈ g. As x1/y1 v x/y
and x/y ≡ z/w, there exists a proper quotient z1/w1 v z/w such that
z1/w1 ≡ x1/y1. Obviously z1	w1 ≤ z	w implies that, for all e/f ∈ u∪ g,
x1 	 y1 = z1 	 w1 ≤ (e 	 f)′ and hence x1 	 y1 = z1 	 w1 ↔ e 	 f .
By Proposition 7.1, this implies that z1/w1 is covered by the test u ∪ g.
Since z1/w1 v z/w v c/d ∈ h ⊥ g, z1/w1 is covered by u. In particular,
there is r/s ∈ u such that there is a proper quotient z2/w2 v z1/w1, r/s.
As z1/w1 ≡ x1/y1, there is a proper quotient x2/y2 v x1/y1 such that
x2/y2 ≡ z2/w2. We see that

p/q w x1/y1 w x2/y2 ≡ z2/w2 v z1/w1 v r/s.

and x2/y2 is proper. This is a contradiction with r/s ⊥ p/q.

For a complete lattice ordered effect algebra, we denote the orthoalgebra
of Ω(E) by O(E).

Corollary 7.3. For every complete lattice ordered effect algebra, the map-
ping φE : O(E) → E given by φE([f ]∼) = |f | is a surjective full morphism
of effect algebras.

Proof. It is easy to check that φE is a morphism of effect algebras. Let
s, t ∈ E and suppose that s⊕ t exists. Then, in Ω(E), {s/0} ⊥ {s⊕ t/s} and
hence, in O(E), the sum [{s/0}]∼ ⊕ [{s ⊕ t/s}]∼ exists. As, for all s ∈ E,
φE([{s/0}]∼) = s, φE is surjective.

To abbreviate our notations, let us write

• f . g instead of [f ]∼ ≤ [g]∼

• a/b ⊥ f instead of {a/b} ⊥ f

• a/b . f instead of {a/b} . f .

Proposition 7.4. Let E be a complete lattice ordered effect algebra, let f ,g
be events of Ω(E). Then f . g if and only if, for all a/b ∈ Q(E), a/b ⊥ g
implies that a/b ⊥ f .
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Proof. Suppose that f . g. There is an event v such that v ⊥ f and
v ∪ f ∼ g. If a/b ⊥ g, then a/b ⊥ v ∪ f and a/b ⊥ f .

Suppose that, for all a/b ∈ Q(E), a/b ⊥ g implies that a/b ⊥ f . Let u be
a local complement of g. By assumption, every quotient in u is orthogonal
to f . By Proposition 6.8, this implies that f ∪u is an event. Let v be a local
complement of f ∪ u. Then u is a local complement of f ∪ v. Consequently,
f ∪ v ∼ g and f . g.

Corollary 7.5. Let E be a complete lattice ordered effect algebra, let f ,g be
events of Ω(E). Then f ∼ g if and only if, for all a/b ∈ Q(E), a/b ⊥ f ⇔
a/b ⊥ g.

Proof. By Proposition 7.4.

Proposition 7.6. Let E be a complete lattice ordered effect algebra, let f ,g
be events of Ω(E). Then f . g if and only if for all x/y ∈ f x/y . g.

Proof. Suppose that for all x/y ∈ f we have x/y . g. Let h be a local
complement of g. Then f . g if and only if f ⊥ h. Let x/y ∈ f and z/w ∈ h.
Since x/y . g ⊥ h & z/w, we see that x/y ⊥ z/w. By Proposition 6.8,
f ⊥ h.

8. Perspectivity of sharp and compatible events

We say that an event f of Ω(E) sharp if and only if |f | is sharp.

Proposition 8.1. Let E be a complete lattice ordered effect algebra. Let g
be a sharp event of Ω(E), let f be an event of Ω(E). Then f . g if and only
if |f | ≤ |g|.

Proof. Obviously, f . g implies that |f | ≤ |g|.
Suppose that |f | ≤ |g| and that a/b ⊥ g. By Proposition 7.4, it suffices to

prove that a/b ⊥ f . Suppose that a/b 6⊥ f . By Proposition 6.8, this implies
that a/b 6⊥ c/d for some c/d ∈ f . As (a	b)⊕|g| exists, (a	b)⊕(c	d) exists.
Therefore, a/b is not disjoint with c/d. In particular, (a	 b) ∧ (c	 d) > 0.
However, we then have

0 < (a	 b) ∧ (c	 d) ≤ a	 b ≤ |g|′

and
0 < (a	 b) ∧ (c	 d) ≤ c	 d ≤ |f | ≤ |g|.

This is a contradiction with |g| ∈ S(E).

Corollary 8.2. Let E be a complete orthomodular lattice. Then the mapping
ψ : O(E) → E given by ψ([f ]∼) = |f | is an isomorphism.
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Proof. The proof is a trivial application of Proposition 8.1 and is therefore
omitted.

Proposition 8.3. Let E be a complete lattice ordered effect algebra. Let
f ,g be compatible events of Ω(E) such that f ∪ g is compatible. Let L be a
finite compatible 0, 1-sublattice of E with f ∪ g ⊆ Q(L). Then f . g if and
only in +f ≤ +g in B(L).

Proof. Let (ci)2k
i=1 be an L-chain representation of the complement of +g in

B(L) and write h = {c2/c1, . . . , c2k/c2k−1}. By Corollary 6.7 g loc h.
Since Ω(E) is algebraic, f . g is equivalent to f ⊥ h. By Corollary 6.7,

f ⊥ h if and only if +f ⊥ +h. Obviously +f ⊥ +h if and only if +f ≤
+g.

Corollary 8.4. Let M be a complete MV-effect algebra. Then the mapping
ψ : O(M) → B(M) given by ψ([f ]∼) = +f is an isomorphism of effect
algebras.

Proof. Let us prove that ψ is well-defined: suppose that f ∼ g. Since M is
an MV-effect algebra, f ∪ g is compatible. By Proposition 8.3, +f = +g.
Obviously ψ is surjective. Suppose that ψ(f) = ψ(g), that means, +f = +g.
By Proposition 8.3, f ∼ g.

It remains to prove that φ is a homomorphism. Suppose that [f ]∼ ⊥
[g]∼. This implies that f ⊥ g. Let L be a finite 0, 1-sublattice of E with
f ∪ g ⊆ Q(L). By Corollary 6.7, ψ(f) ⊥ ψ(g) and, obviously,

ψ([f ]∼ ⊕ [g]∼) = ψ([f ∪ g]∼) = (+f)⊕ (+g) = ψ([f ]∼)⊕ ψ([g]∼).

9. O(E) is a lattice

Let f = {a1/b2, . . . , an/bn} be a compatible event of E. In what follows,
〈f〉 denotes the (finite distributive) 0, 1- sublattice of E generated by the set
{a1, b1, . . . , an, bn}.

Let f be an event of E. We denote the test

{a/b : a ∈ J(〈fR〉), a �L b}

by tf . We write
f∗ := {a/b ∈ tf : a/b ⊥ f}.

We have f ∼ fR and fR loc f∗. Since Ω(E) is algebraic, f loc f∗.

Proposition 9.1. Let E be a complete lattice ordered effect algebra. Let f
be an event of Ω(E), let a/b ∈ Q(E). Then a/b ⊥ f if and only if a/b is
covered by f∗.
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Proof. Suppose that a/b ⊥ f . We shall prove that a/b is covered by f∗.
For all c/d ∈ f , a 	 b ↔ c 	 d. Therefore, by Corollary 5.7, {aR/bR} ∪ fR

is a compatible set of quotients. Obviously, 〈fR〉 ⊆ 〈fR ∪ {aR/bR}〉. As
f∗ ⊆ Q(〈fR〉), this implies that {aR/bR} ∪ f∗ is compatible. Therefore, for
all c/d ∈ fR ∪ f∗, a 	 b ↔ c 	 d. By Proposition 7.1, a/b is covered by the
test fR ∪ f∗. Since a/b ⊥ fR, a/b is covered by f∗.

Suppose that a/b is covered by f∗. As f loc f∗, this implies that a/b . f∗

and hence a/b ⊥ f .

Corollary 9.2. Let E be a complete lattice ordered effect algebra. Let f ,g
be events of Ω(E). Then g . f if and only if every a/b ∈ g is covered by
f∗∗.

Proof. Since f loc f∗, g . f if and only if g ⊥ f∗. By Proposition 6.8 g ⊥ f∗

if and only if every a/b ∈ g is orthogonal to f∗. By Proposition 9.1, a/b ⊥ f∗

if and only if a/b is covered by f∗∗.

Let us write, for a/b ∈ Q(E) and p ∈ S(E), (a/b)up = a∧p/b∧p. Note
that the reduction map is a special case of u: aR/bR = (a/b) u (a	 b)↑.

Lemma 9.3. Let E be a complete lattice ordered effect algebra, let p, a, b ∈
E. If p↔ a, b, then {a/b} ∼ {(a/b) u p, (a/b) u p′}.

Proof. Let L be a finite compatible 0, 1-sublattice of E with a, b, p ∈ L. An
easy computation in B(L) yields (a∧ p+ b∧ p)∨̇(a∧ p′ + b∧ p′) = a+ b. By
Proposition 8.3, {a/b} ∼ {(a/b) u p, (a/b) u p′}.

Lemma 9.4. Let E be a complete lattice ordered effect algebra. For all
s, t ∈ E, s ∧ (s ∧ t)↑ ↔ t ∧ (s ∧ t)↑.

Proof. We have
s ∧ t = s ∧ (s ∧ t) ≤ s ∧ (s ∧ t)↑.

Similarly, s ∧ t ≤ t ∧ (s ∧ t)↑. Thus, we have

s ∧ (s ∧ t)↑, t ∧ (s ∧ t)↑ ∈ [s ∧ t, (s ∧ t)↑].

By Proposition 5.3, [s ∧ t, (s ∧ t)↑] is a compatible set, hence s ∧ (s ∧ t)↑ ↔
t ∧ (s ∧ t)↑.

Lemma 9.5. Let E be a complete lattice ordered effect algebra. Let a/b, c/d ∈
Q(E) be reduced. Then x/y . (a/b), (c/d) if and only if

x/y . (a/b) u
(
(a	 b) ∧ (c	 d)

)↑
and

x/y . (c/d) u
(
(a	 b) ∧ (c	 d)

)↑
.
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Proof. We may assume that x/y is reduced. Suppose that x/y . (a/b), (c/d).
Then x	y ≤ (a	b)∧(c	d) ≤

(
(a	b)∧(c	d)

)↑. By Proposition 5.3, since
{x	y, a	b, (a	b)∧(c	d)} is a compatible set, {x	y, a	b,

(
(a	b)∧(c	d)

)↑}
is a compatible set. As x/y and a/b are reduced quotients, Corollary 5.7 im-
plies that {x, y, a, b,

(
(a	 b)∧ (c	d)

)↑} is a compatible set. By Lemma 9.3,
we have

{x/y} . {a/b} ∼ {(a/b) u
(
(a	 b) ∧ (c	 d)

)↑
, (a/b) u

(
(a	 b) ∧ (c	 d)

)↑′}.
Let u be a local complement of

{(a/b) u
(
(a	 b) ∧ (c	 d)

)↑
, (a/b) u

(
(a	 b) ∧ (c	 d)

)↑′}.
Since {x, y, a, b,

(
(a 	 b) ∧ (c 	 d)

)↑} is a compatible set and x/y ⊥ u, we
have x	 y ↔ e	 f , for all e/f ∈ {(a/b) u

(
(a	 b) ∧ (c	 d)

)↑
, (a/b) u

(
(a	

b) ∧ (c	 d)
)↑′} ∪ u. Therefore, by Proposition 7.1, x/y is covered by

{(a/b) u
(
(a	 b) ∧ (c	 d)

)↑
, (a/b) u

(
(a	 b) ∧ (c	 d)

)↑′} ∪ u.

However, x/y ⊥ u and, since x	 y ≤
(
(a	 b) ∧ (c	 d)

)↑ ∈ S(E), x/y and
a/b u

(
(a 	 b) ∧ (c 	 d)

)↑′ are disjoint. Therefore, x/y . (a/b) u
(
(a 	 b) ∧

(c	 d)
)↑. Symmetrically, one can prove x/y . (c/d) u

(
(a	 b) ∧ (c	 d)

)↑.
The opposite implication follows by Lemma 9.3.

Lemma 9.6. Let E be a complete lattice ordered effect algebra. Suppose
that a/b, c/d ∈ Q(E) are such that a	 b↔ c	 d. Then [{a/b}]∼ ∧ [{c/d}]∼
exists in O(E) and equals [{aR ∧ cR/(bR ∨ dR) ∧ (aR ∨ cR)}]∼.

Proof. Suppose that x/y . a/b, c/d. Since the set {a	b, c	d, x	y} is mutu-
ally compatible, Corollary 5.7 implies that the set of quotients {xR/yR, aR/bR, cR/dR}
is compatible. Thus, there is a finite compatible sublattice L of E with
{xR/yR, aR/bR, cR/dR} ⊆ Q(L). By Proposition 8.3, we see that xR + yR ≤
aR + bR, cR + dR in B(L). A simple calculation in B(L) then yields

(aR + bR) ∧ (cR + dR) = (aR ∧ cR) +
(
(bR ∨ dR) ∧ (aR ∨ cR)

)
,

hence we obtain

xR + yR ≤ (aR ∧ cR) +
(
(bR ∨ dR) ∧ (aR ∨ cR)

)
≤ aR + bR, cR + dR.

Again, by Proposition 8.3, we obtain

xR/yR . aR ∧ cR/(bR ∨ dR) ∧ (aR ∨ cR) . aR/bR, cR/dR.
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Lemma 9.7. Let E be a complete lattice ordered effect algebra. For all
a/b, c/d ∈ Q(E), [{a/b}]∼ ∧ [{c/d}]∼ exists in O(E).

Proof. We may assume that a/b and c/d are reduced; by Lemma 9.5, [{a/b}]∼∧
[{c/d}]∼ exists if and only if

[{(a/b) u
(
(a	 b) ∧ (c	 d)

)↑}]∼ ∧ [{(c/d) u
(
(a	 b) ∧ (c	 d)

)↑}]∼
exists, and they are equal. Let M be a block of E with a	b, (a	b)∧(c	d) ∈
M . By Proposition 5.3,

(
(a	 b)∧ (c	d)

)↑ ∈M . Since M ∩S(M) = C(M),(
(a	 b) ∧ (c	 d)

)↑ is central in M . Therefore,

|(a/b)u
(
(a	b)∧(c	d)

)↑| = (
a∧

(
(a	b)∧(c	d)

)↑)	(
b∧

(
(a	b)∧(c	d)

)↑) =

= (a	 b) ∧
(
(a	 b) ∧ (c	 d)

)↑
. (10)

Similarly, we obtain

|(c/d) u
(
(a	 b) ∧ (c	 d)

)↑| = (c	 d) ∧
(
(a	 b) ∧ (c	 d)

)↑
.

By Lemma 9.4 (put s = a	 b and t = c	 d),

(a	 b) ∧
(
(a	 b) ∧ (c	 d)

)↑ ↔ (c	 d) ∧
(
(a	 b) ∧ (c	 d)

)↑
.

By Lemma 9.6,

[{(a/b) u
(
(a	 b) ∧ (c	 d)

)↑}]∼ ∧ [{(c/d) u
(
(a	 b) ∧ (c	 d)

)↑}]∼
exists in O(E).

Theorem 9.8. Let E be a complete lattice ordered effect algebra. O(E) is
an orthomodular lattice.

Proof. It is well known that an orthoalgebra is a lattice iff it is a (lower or
upper) semilattice. Therefore, it suffices to prove that for every pair f ,g of
events of Ω(E), [f ]∼ ∧ [g]∼ exists in the orthoalgebra O(E). Let us write

f∗∗ = {a1/b1, . . . , an/bn}
g∗∗ = {c1/d1, . . . , cm/dm}.

For i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} let eij/fij be such that

[{eij/fij}]∼ = [{ai/bi}]∼ ∧ [{cj/dj}]∼

and put
h := {eij/fij : i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}}.

30



By Theorem 4.12, h is an event of Ω(E) and, by Proposition 7.6, h . f∗∗,g∗∗.
It remains to prove that, for every u . f∗∗,g∗∗ we have u . h. Let x/y ∈ u.
By Corollary 9.2, x/y is covered by f∗∗ and g∗∗. By a simple induction with
respect to m and n, it is easy to prove that

{x/y} ∼ {xij/yij : i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}},

where for each xij/yij we have xij/yij v ai/bi, cj/dj . This implies that, for
all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

[xij/yij ]∼ ≤ [ai/bi]∼ ∧ [cj/dj ]∼.

Consequently, by Proposition 7.6, x/y . h and, again by Proposition 7.6.
u . h.

10. φE, φ∗E, compatibility and blocks

In this section, we shall show that there is one to one correspondence
between blocks of a complete lattice ordered effect algebra E and O(E).
Under φE , the (pre)image of a block is always a block. Moreover, we prove
that E, as a lattice, embeds into O(E).

Lemma 10.1. Let E be a complete lattice ordered effect algebra, let f be a
reduced event of Ω(E). Then

f ∼ {|f |↓/0} ∪ {(a/b) u |f |↓′ : a/b ∈ f}

Proof. Since f is reduced, f is compatible. Let M be a block with f ⊆ Q(M).
Since |f | ∈ M , |f |↓ ∈ M . Therefore, for all a/b ∈ f we have |f |↓ ↔ a, b. By
Lemma 9.3,

{a/b} ∼ {(a/b) u |f |↓, (a/b) u |f |↓′},

hence
f ∼

⋃
a/b∈f

{(a/b) u |f |↓, (a/b) u |f |↓′} (11)

Since |f |↑ ∈ C(M), we have

|f | =
⊕

a/b∈f

a	 b =
⊕

a/b∈f

(a	 b) ∧ |f |↓
⊕

a/b∈f

(a	 b) ∧ |f |↓′.

Since |f |↓ ≤ |f | and |f |↓ ∈ S(E), we see that

|f |↓ =
⊕

a/b∈f

(a	 b) ∧ |f |↓.
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Since, for all a/b ∈ f ,

|(a/b) u |f |↓| = (a ∧ |f |↓)	 (b ∧ |f |↓),

we obtain
|f |↓ =

⊕
a/b∈f

|{(a/b) u |f |↓}| = |{|f |↓/0}|.

By Proposition 8.1, this implies that⋃
a/b∈f

{(a/b) u |f |↓} ∼ {|f |↓/0}.

The rest follows from (11).

Lemma 10.2. Let E be a complete lattice ordered effect algebra, let [f ]∼, [g]∼ ∈
O(E). Then [f ]∼ ↔O(E) [g]∼ if and only if φE([f ]∼) ↔E φE([g]∼).

Proof. We may assume that f and g are reduced. By Lemma 10.1, we have

f ∼ {|f |↓/0} ∪ {(a/b) u |f |↓′ : a/b ∈ f}R

g ∼ {|g|↓/0} ∪ {(a/b) u |g|↓′ : a/b ∈ g}R

Let M be a block with |f |, |g| ∈ M . Then [|f |↓, |f |] ∪ [|g|↓, |g|] ∈ M . Since,
for all c/d ∈ {|f |↓/0} ∪ {(a/b) u |f |↓′ : a/b ∈ f}R ∪ {|g|↓/0} ∪ {(a/b) u |g|↓′ :
a/b ∈ g}R, c	 d ∈ M , we have c, d ∈ M for all such c/d. Let L be a finite
compatible 0, 1-sublattice of E such that

{|f |↓/0}∪{(a/b)u|f |↓′ : a/b ∈ f}R∪{|g|↓/0}∪{(a/b)u|g|↓′ : a/b ∈ g}R ⊆ Q(L).

Let tL be the test
{e/f : e ∈ J(L) and e �L f}.

By Proposition 8.3 and Corollary 6.7, it is easy to check that for every
c/d ∈ Q(L) there exists h ⊆ tL such that h ∼ {c/d}. Therefore, [f ]∼ and
[g]∼ are covered by the word ([{a/b}]∼ : a/b ∈ tf ). Thus, [f ]∼ ↔ [g]∼.

Theorem 10.3. Let E be a complete lattice ordered effect algebra.

(a) Let M be a block of E. Then φ−1
E (M) is a block of O(E).

(b) Let B be a block of O(E). Then φE(B) is a block of E.

Proof.

(a) By Lemma 10.2, φ−1
E (M) is a compatible subset of O(E). We shall

prove that φ−1
E (M) is a maximal compatible subset of O(E). Let

y ∈ O(E) and suppose that, for all x ∈ φ−1
E (M), x ↔ y. Then, by

Lemma 10.2, φE

(
{y}∪φ−1

E (M)
)
⊇M is compatible in E. Since M is a

maximal compatible subset of E, φE

(
{y}∪φ−1

E (M)
)

= M . Therefore,
φE(y) ∈M and y ∈ φ−1

E (M).
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(b) φE(B) is compatible. Let M ⊇ φE(B) be a block of E. By part (a),
φ−1

E (M) is a block of O(E). By the maximality of B, B = φ−1
E (M)

and we see that φE(B) = φE

(
φ−1

E (M)
)

= M .

For a complete lattice ordered effect algebra E, a mapping φ∗E : E →
O(E) is defined by φ∗E(x) = [{x/0}]∼. Note that φE

(
φ∗E(x)

)
= x.

Lemma 10.4. Let E be a complete lattice ordered effect algebra, let a/b ∈
Q(E) be reduced and let p ∈ S(E) be such that p↔ a	 b. Then (a/b)u p is
reduced.

Proof. We shall prove that x ≤ b ∧ p and x ∧
(
(a ∧ p) 	 (b ∧ p)

)
= 0 imply

that x = 0.
Note that, since a/b is reduced and x, p ↔ a 	 b, {x, a, b, p} is a com-

patible set; let M ⊇ {x, a, b, p} be a block of E. Since p is central in M , we
have (a ∧ p)	 (b ∧ p) = (a	 b) ∧ p. Moreover,

x ∧ (a	 b) = x ∧
((

(a	 b) ∧ p
)
∨

(
(a	 b) ∧ p′

))
=

=
(
x ∧ (a	 b) ∧ p

)
∨

(
x ∧ (a	 b) ∧ p′

)
= x ∧ (a	 b) ∧ p′ (12)

and, since x ≤ p, x ∧ (a	 b) ∧ p′ = 0. Since x ≤ b, x ∧ (a	 b) = 0 and a/b
is reduced, x = 0.

Theorem 10.5. Let E be a complete lattice ordered effect algebra. Then
φ∗E is a injective 0, 1-lattice homomorphism.

Proof. It is obvious that φ∗E(0) = 0O(E) and that φ∗E(1) = 1O(E) and that
φ∗E is injective. Let a, c ∈ E. By Lemma 9.5,

φ∗E(a) ∧ φ∗E(c) = [{a/0}]∼ ∧ [{c/0}]∼ = [{a/0} u (a ∧ c)↑]∼ ∧ [{c/0} u (a ∧ c)↑/0] =

= [{a ∧ (a ∧ c)↑/0}]∼ ∧ [{c ∧ (a ∧ c)↑/0}]∼.

By Lemma 9.4, a ∧ (a ∧ c)↑ ↔ a ∧ (a ∧ c)↑, hence we may apply Lemma 9.6
to obtain

[{a∧ (a∧ c)↑/0}]∼∧ [{c∧ (a∧ c)↑}]∼ = [{a∧ c∧ (a∧ c)↑/0}]∼ = [{a∧ c/0}]∼.

It remains to prove that φ∗E preserves joins; in other words, that [{a/0}]∼ ∨
[{c/0}]∼ = [{a∨ c/0}]∼. This is equivalent to [{1/a}]∼ ∧ [{1/c}]∼ = [{1/a∨
c}]∼. We have

(1/a)R = a′↑/a ∧ a′↑

(1/c)R = c′↑/c ∧ c′↑.

33



By Lemma 9.5,

[{a′↑/a∧a′↑}]∼∧[{c′↑/c∧c′↑}]∼ = [{(a′↑/a∧a′↑)u(a′∧c′)↑}]∼∧[{(c′↑/c∧c′↑)u(a′∧c′)↑}]∼.

We see that

(a′↑/a ∧ a′↑) u (a′ ∧ c′)↑ = (a′ ∧ c′)↑/a ∧ (a′ ∧ c′)↑

(c′↑/c ∧ c′↑) u (a′ ∧ c′)↑ = (a′ ∧ c′)↑/c ∧ (a′ ∧ c′)↑

and that, by Lemma 10.4, both quotients are reduced. Moreover, since

(a′ ∧ c′)↑ 	
(
a ∧ (a′ ∧ c′)↑

)
= (1	 a) ∧ (a′ ∧ c′)↑ = a′ ∧ (a′ ∧ c′)↑

and, similarly,

(a′ ∧ c′)↑ 	
(
c ∧ (a′ ∧ c′)↑

)
= c′ ∧ (a′ ∧ c′)↑,

Lemma 9.4 implies that they are compatible. Therefore, we may apply
Lemma 9.6 to compute the meet of their perspectivity classes. After an
easy computation we obtain

[(a′∧c′)↑/a∧(a′∧c′)↑]∼∧[(a′∧c′)↑/c∧(a′∧c′)↑]∼ = [(a′∧c′)↑/(a∨c)∧(a′∧c′)↑]∼.

Finally, it remains to observe that

(1/a ∨ c)R = (a′ ∧ c′)↑/(a ∨ c) ∧ (a′ ∧ c′)↑.

Corollary 10.6. Let E be a complete lattice ordered effect algebra. φ∗E(S(E))
is a sub-orthomodular lattice of O(E).

Proof. By Theorem 10.5, φ∗E(S(E)) is closed with respect to 0, 1,∨, and ∧.
It remains to prove that φ∗E(S(E)) is closed with respect to ′. Let a ∈ S(E).
Then φ∗E(a) = [{a/0}]∼. In O(E), we have [{a/0}] =∼= [{1/a}]∼. Since
a, a′ ∈ S(E), {1/a} is a sharp event of Ω(E). By Proposition 8.1, |{1/a}| =
|{a′/0}| implies that {1/a} ∼ {a′/0} and we see that

[{1/a}]∼ = [{a′/0}]∼ = φ∗E(a′) ∈ φ∗E(S(E)).
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[5] F. Chovanec and F. Kôpka, ‘Boolean D-posets’, Tatra Mt. Math. Publ 10 (1997),
1–15.
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