COMPATIBILITY MAPPINGS IN INTERVAL EFFECT
ALGEBRAS

GEJZA JENCA

1. SETUP

1.1. Partially ordered abelian groups. Let G be an (additive) abelian group.
We say that G is a partially ordered abelian group iff G is equipped with a partial
order that is compatible with addition, that means, for all a,b,t € G,

a>b=a+t>b+1t

For a partially ordered abelian group G, we write
Gt ={ae€G:a>0}.

The elements of Gt are called positive. Obviuosly, GT is a submonoid of G. More-
over, GT is conical, that means, if a,b € Gt and a +b =0, then a = b = 0.

Given a group G, it is easy to see that there is a one-to one correspondence
between partial orders on G and conical submonoids of G.

1.2. Order units. Let G be a partially ordered abelian group. We say that u € G
is an order unit iff for every a € G there is n € N such that n.u > a.

A pair (G,u), where G is a partially ordered abelian group and w is an order
unit of G is called a unital group.

Let (G1,u1), (G2, us2) be unital groups. A mapping ¢ : G; — Gs is a morphism
of unital groups iff ¢ is a group homomorphism, x > y implies ¢(z) > ¢(y) and
d)(ul) = U3.

For a morphism of unital groups, we write ¢ : (G1,u1) — (G2, u2).

1.3. Interval effect algebras. One can construct examples of effect algebras from
an arbitrary partially ordered abelian group (G, <) in the following way: Choose
any positive u € G; then, for 0 < a,b < u, define a ® b if and only if a +b < u
and put a ® b = a + b. With such partial operation @, the interval [0, u] becomes
an effect algebra ([0, u], ®,0,u). Effect algebras which arise from partially ordered
abelian groups in this way are called interval effect algebras, see [?].

1.4. Group valued measures and ambient groups. Let E be an effect algebra
and let (G2, us) be a unital group. A morphism of effect algebras from E to the
interval effect algebra [0, us]q, is called a group-valued measure.

(prop:ambient) proposition 1. 2 [?] Let E be an interval effect algebra. There exists a unital

group (G1,uy) such that E = [0,u1]q,, F generated Gy and for every unital group
(Ga,u2) and every group valued measure ¢ : E — [0, us]q,, phi extends to a unique

LGive some easy examples, and S(H)
2100k it up in the original paper.
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morphism of unital groups $ : (G1,u1) — (Ga,uz). The unital group (Gy,u1) is
unique, up to isomorphism.

The unital group (G, u;) from Proposition 1 is called the ambient group of E,
denoted by G(E).

1.5. Mobius inversion theorem. We say that a partially ordered set (P, <) is
locally finite if and only if every closed interval

[z, ylp ={z€P:x<z<y}

is a finite set.

Let G be an abelian group and let (P, <) be a locally finite partially ordered set.
Define I(P) to be the set of all pairs (x,y) € P x P such that (z < y).

There exists a unique function p : I(P) — G such that, for all (z,y) € I(P),

(1) [eqrmobius > Al@2) =bay,

z<z<y

where 0, , is the Kronecker delta. We say the u is the Mobius map of the poset
P.

To see that the Mobius map exists and is unique, observe that the equation 1
allows for an inductive definition of .

Indeed, let P be a locally finite poset. For (z,y) € I(P), let us write h(z,y) for
the height of the interval [x,y]p. If h(z,y) =0, then = y and pu(z,y) = 05, = 1.
Let (z,y) € I(P), h(z,y) = n > 0 and suppose that we already know the values
w(x, z) for all (x, z) € I(P) with h(z,z) < n.

Since h(x,y) > 0, © # y. Therefore, by equation 1,

Z w(z,z) =65, = 0.
z<z<y

This implies that

u(:my) = - Z ,u(ac,z),

z<z<y

and the values of p(z, z) are already known.

Example 1. Let S be a set, write F'in(S) for the set of all finite subsets of S. For
the poset (Fin(S),C), we have u(X, Z) = (—1)XI+12l,

Theorem 1 (Mobius inversion formula). Let f : I(P) — A, define f<(x,y) :=
Zzgzgy f(z,2). Then

f('ray) = Z ,u(a:,z)fg(z,y).

<2<y

We say that f(x,y) is the Mobius inversion of f<. 3

3Look it up. What is the MI of what?
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1.6. Compatibility maps. Let E be an interval effect algebra. Let S C E. Let
us write Fin(S) for the set of all finite subsets of S. Obviously, (Fin(S),C) is a
locally finite poset.

For every mapping « : Fin(S) — G(E), we define a mapping D,, : I[(Fin(S)) —
G. For (X, A) € I(Fin(S)), the value D, (X, A) € G is given by the rule

Do(X,A):= > (-1)¥H%la(2z).
XCZCA

Note that there is an obvious connection to Mobius inversions: define & :

I(Fin(S)) — G by
a(X,A) = a(X).
Then D, is the Mobius inversion of &. By the Mobius inversion formula we see
that
a(X) =a(X,A) = Z D. (X, Z),
X<Z<A
for any A O X. In particular, A := X yields a(X) = D, (X, X).
(lemma:formal) [ emma 1. Let E be an interval effect algebra. Let S be a subset of E, let « :
Fin(S) — G(E). Forallce S\ A,
Do(X,A) = Do (X, AU{c}) + Do (X U{c}, AU{c}).
Proof. * Let us rewrite
Du(X, AU{ch = 3 (~1)XHiZlg(z).
XCZCAU{c}

For any Z in the above sum, either c€ Z orc ¢ Z. If c€ Z, then X U {c} C Z C
AU{c}. If ¢ ¢ Z, then X C Z C A. Consequently,

Du(X,AUfcH) = 3 ()NHZaz)+ Y (—)NHZla(z) =
XCZCA Xu{c}CzCAU{c}
:Da<X? A) + Z (_1>|X\+|Z\a(z)
XU{c}CZCAU{c}
It remains to observe that
()X la(2) =
XU{c}CZCAU{c}
=— Y ()PUEIHZla(2) = Do(X U e} AU{c)).
XU{c}CZCAU{c}
O

?(def:cm)?

Definition 1. Let E be an interval effect algebra, let S C E.

We say that a mapping « : Fin(S) — E is a compatibility mapping for S if and
only if the following conditions are satisfied.

(A1) a(0) =1,

(A2) forallce S, a({c}) =c,

(A3) for all (X, A) in I(Fin(S)), 0 < Dy(X,A) < wu.

4The sums look awkward.
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1.7. Properties of compatibility maps. To shorten our formulations, let us
introduce some running notation:

e FE is an interval effect algebra,
e S is a subset of F,
e a: Fin(S) — F is a compatibility map.

(prop:base) proposition 2. For all A € Fin(S) and ¢ € S\ A, Do(X, AU {c}) L Dy(X U
{c},AU{c}) and

Do (X,A) =Dy(X,AU{c}) ® Do (X U{c}, AU {c}).
Proof. By Lemma 1. O

(coro:antitone)

Corollary 1. « is an antitone map from (Fin(S), C) to (E, <).

Proof. Let us prove that for any ¢ € S\ X, a(X U{c}) < a(X). Put X = Ain
Proposition 2 to obtain

a(X) = Do(X, X) = Do(X, XU{c})BDo(XU{c}, XU{c}) > Do (XU{c}, XU{c}) = a(XU{c}).

The rest of the proof is a trivial induction. O

{coro:1bound) Cigpollary 2. a(X) is a lower bound of X.
Proof. Let ¢ € X. By Corollary 1, {c} C X implies that
¢ =a({c}) = a(X).

Corollary 3. If0 € X, then o(X) =0.
Proof. Trivial, by Corollary 2. O
(coro:zero) Corollary 4. If 1 ¢ X, then Do(X, X U{1}) = 0.
Proof. (By induction with respect to | X|.) If X = @, then
Do(X, X U{1}) = Du(0,{1}) = a(@) —a({1})=1—-1=0.

Suppose that the Corollary is true for some X and let ¢ ¢ X, ¢ # 1. We want
to prove that D, (X U{c}, X U{c}U{1}) = 0. Putting A = X U {1} in Proposition
2 yields

Do(X, X U{1}) = Do(X, X U{c} U{1}) ® Do(X U{c}, X U{c} U{1}).
By the induction hypothesis, D, (X, X U{1}) =0, and since
Do(X, X U{1}) > Do(X U{c}, X U{c}U{1}),
we may conclude that D, (X U {c}, X U{c}U{1}) =0. O
Corollary 5. a(X) =a(X U{1})

Proof. If 1 € X, there is nothing to prove.
Suppose that 1 ¢ X. Putting A = X and ¢ = 1 in Proposition 2 yields
Do(X,X)=Dy(X,XU{1}) ® Do (X U{1}, X U{1}).
By Corollary 4, D, (X, X U{1}) =0, hence
a(X) =D\ (X, X) =D, (X U{1}, X U{1}) = a(X U{1}).
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1.8. Examples of compatibility maps.

(prop:Dwedge) pronosition 3. Let M be an MV-effect algebra. For the mapping N : Fin(M) —
M,

DA(X,A) = A X e (AX) A\ 4/X)).
Proof. The proof goes by induction with respect to |[A\ X]|.
If |[A\ X| =0, then A = X and
DA(X,A) =D(X,X) = \X.
For the right-hand side,

Axes(AX)A\A/X) = A\Xxe(A\X)r0) =X

Let n € N, suppose that the Proposition is true for all pairs (X, A) with |A\ X| <
n. Let X, A; € Fin(M) be such that X C A; and |41\ X| =n+1. Pickec e A1\ X
and put A := Ay \ {c}. Then c ¢ A and A; = AU {c}.
By Lemma 1,
Dp(X, A) = DA(X, AUA{c}) + DA(X U {c}, AU{c}),
hence
DA(X,AU{c}) = DA(X,A) — DA(X U {c}, AU{c}).
To abbreviate, let us write z := A X, a := \V X \ A. Note that \/(AU {c})\ (X U
{c}) = a and that \/(AU {c})\ X = a V c. We need to prove that

DX, AU{c})=zoxzA(aVec).
By the induction hypothesis, we may write
D(X,A)=x6zAa
DX U{c},AU{c}) =(zNnc)O (zAcAa),
therefore
DX, AU{c})=(zoxzNha)— ((xAc)E (xAcAa)).
Thus, it remains to prove that
zoxzA(avVe)=(@ozNha)—((xAc)O (zAcha)),
that means,
((xAhe)o(xAeha)+z0xA(aVe)=zO0xAa.
Since M is an MV-algebra, we may compute
((xne)s(@hcha))=((xAc)e((zAhc)AN(xzha)=((zAc)V(zAha)o(zAa) =
=xzA(eVa)o(zAha)=zAN(aVe)O (zAa),
hence
((xAhc)s(xhecha))+zoxA(aVe) =
(xA(ave)e(zha)+(xoxA(aVe)=z6xAa.
[

Corollary 6. Let G be an abelian l-group. The mapping N\ : Fin(M) — M is a
compatibility map.
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Proof. Clearly, the conditions (A1) and (A2) are satisfied.
Moreover, for any (X, A) € Fin(M), u > AX > (AX)A(V A/X)). Therefore,
by Proposition 3, u > D(X, A) > 0 and we see that (A3) is satisfied. O

{prop:Dprod) proposition 4. Let E be an interval effect algebra. Assume that G(E) can be
equipped with a product so that (G(E),+,.,0,1,<) is a partially ordered commuta-
tive ring.

Let 11 : Fin(E) — E be given by

DH{zy,...,zn}) =a1..... T
For every (X, A) € I(Fin(E)) andc € E\ A,
Dn(X u{c}, AU{c}) = c.Dn(X, A).

Proof. Let us compute

Dn(X U{eh, AU{e)) = > (myRenPz) =
XU{c}CZCAU{c}
Z (_1)\Xu{c}|+\Yu{c}\H(Y U{c}H) = Z (_1>|X\+|Y\H<y U{c}) =
XCYCA XCYCA
c. > (~)YHYIIY) = e.D(X, A).
XCYCA

Corollary 7. II is a compatibility map.

Proof. The proof goes by induction with respect to |[A\ X]|.
For A= X, Dn(X,A) = Dp(X,X) =TI(X) and 0 < TI(X) < 1.
Let n € N. Suppose that, for all A, X € Fin(F) such that |4\ X| = n,
0 < Dp(X,A) < 1. Let A, X € Fin(E) be such that |[A; \ X| = n+ 1. Pick
c€ A1\ X and write A = A; \ {c}. We see that ¢ ¢ A and that A; = AU{c}. We
shall prove that 0 < D (X, AU {c}) <1.
By Lemma 1 and Proposition 4,
Dp(X,AU{c}) =Dn(X,A) — Dp(X U{c},Au{c}) =
Dp(X,A) —e.Dp(X,A) = (1 —¢).Dp(X, A).
By the induction hypothesis, 0 < Dy(X, A) <1, hence
0<(1—-¢).Dn(X,A) <1.
5 O
Proposition 5. Let Eq, E5 be interval effect algebras. Let ¢ : E1 — FEs be a
momorphism of effect algebras. If S1 C Ei is such that there is a compatibility
mapping a1 of S1, then ¢(S1) admits a compatibility mapping.
Proof. The mapping ¢ is a G(F3) valued measure on E;. Therefore, there is a
morphism of unigroups ¢ : (G(E1),1) — (G(Es),1)) extending ¢.
For every a € ¢(S1), fix p(a) € Si such that ¢(p(a)) = a. Define as :

~

Fin(¢(S1)) — Es as follows:
az({z1,...,z0}) = dlar({p(x1), .. .. p(zn)})),

5Do we need 1 to be a ring unit? Maybe a general order unit u would do.
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or, in other words, for X € Fin(Ss3), as(X) = (g(al(p(X))). Then «y is a compat-
ibility map for $(51)~

Indeed, condition (A1) and (A2) are trivially satisfied. For the proof of (A3) we
may compute

Doy (X, A) = Y (~)XWlay(z) = 37 (—1)XHG(n(p(2))) =

XCZCA XCzZCA
o Y (—)FHEapz) =0 > (—1PEFYI (7).
XCZCA p(X)CYCp(A)

Since «; is a compatibility map, (—1)PCO+YIq, (V) € E;. Therefore,
q@( Z (=1)PXOHY o (V) € Bs.
p(X)CY Cp(A)
O

Corollary 8. Let (G, <) be a partially ordered abelian group with an order unit u,
let M be an MV-algebra. Let ¢ : M — [0,u]g be a morphism of effect algebras.
Then ¢(M) admits a compatibility mapping.

Proof. According to Mundici’s theorem, the mapping (]

(temma:second) [ ernma 2. Let C, A, X € Fin(S) be such that X C A and CNA = (. Then
(Do (X UY,AUC))ycc is an orthogonal family and

P Da(XUY,AUC) = Do (X, A).
YCccC

Proof. The proof goes by induction with respect to |C|.
For C' = (), the lemma is trivially true. Let C be such that |C| = n and let
ce S,c¢g AUC. Let us consider the family

(Da(XUZ,AUCU{c}))zcouie}-

For each Z C C U {c}, either c € Z or ¢ ¢ Z, so either Z =Y U{c} or Z =Y, for
some Y C C. Therefore, we can write

(Da(XUZ,AUCU{c}))zcoufe} =
(Da(XUY,AUCU{c}),Do(X UY U{c},AUCU{c}))ycc.
By Proposition 2,
Do(XUY,AUCU{c})® Do(XUY U{c},AUCU{c}) =D (X UY,AUC).
It only remains to apply the induction hypothesis to finish the proof. O
Corollary 9. ¢ For every A € Fin(S), (Do(X,A))xca is a decomposition of

(coro:decomposition) ;.

Proof. By Lemma 2,

O

6This follows directly from the M&bius inversion theorem; how about decomposition lemma
itself?
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Corollary 10. For every A € Fin(S), the mapping w4 : 2" L B given by
X) = €P Da(X, 4)
XeX

is a simple observable.
Proof. The atoms of 22") are of the form {X}, where X C A. By Corollary 9,
(wa({X}) : X C A) is a decomposition of unit; the remainder of the proof is
trivial. (]

For A, B € Fin(S) with A C B, let us define mappings g : 2(2%) _, 9(2")

ga(X)={XUCy: X €Xand Cy C (B\ A)}

and let us write G for the collection of all such mappings.

It is an easy exercise to prove that every gg € G is an injective homomorphism
of Boolean algebras and that ((2(2A) : A € Fin(S)),G) is a direct family of Boolean
algebras.

Let us prove that the mappings gg behave well with respect to the observables
w4 and wpg.

Lemma 3. Let A, B € Fin(S) with A C B. The diagram

22" E
95 %
9(2%)

commutes.
Proof. For all X € 22",
wplgn(X)) =wp({XUCy: X e Xand Cy C (B\ A)}) =
=@ (Da(XUCy,B): X € Xand Cy C (B\ A)) =

—EB( D Da(XUCO,B))

XeX CoC(B\A)

Put Y :=Cy, C := B\ A; by Lemma 2,
@ Do (X UCy, B) = Dy(X, A).

CoC(B\A)
Therefore,
wr(gp(X)) = @ Da(X, 4) = wa(X)
Xex
and the diagram commutes. O

Corollary 11. For every B € Fin(S), B is a subset of the range of wp.

Proof. We need to prove that every a € B is an element of the range of wp. For
B =, this is trivial.
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Suppose that B is nonempty and let a € B. Let A = {a}. and let X =
95({{a}}). By Lemma 3,

wp(X) = wp(g95({{a}}) = wal{{a}}),

and we see that

wa({{a}}) = way({{a}}) = Da({a}, {a}) = a({a}) = a.
O

?

" Theorem 2. Let E be an effect algebra. If S admits a compatibility mapping, then
S can be embedded into the range of an observable.

Proof. Suppose that S admits a compatibility mapping. Let us construct Fg(S) as

the direct limit of the direct family (22A : A € Fin(S)), equipped with morphisms

of the type ga. After that, we shall define an observable w : Fp(S) — E.
Consider the set

Ts= |J {(X4):xc2
A€Fin(S)
and define on it a binary relation = by (X, 4) = (Y, B) if and only if ¢4 5(X) =
g5 5(Y), that means
{XUCA : X eXand Cy C AUB\A} = {YUCB :Y eYand Cg C AUB\B}.
Then Fp(S) =T's/ = and the operations on Fg(S) are defined by
(X, 4)]= v [(Y, B)l= = [(94us(X) U g4up(Y), AU B)l=

and similarly for the other operations. Then Fp(S) is a direct limit of Booleat
algebras, hence a Boolean algebra.
Let wg : Fp(S) — E be a mapping given by the rule ws([(X, 4)]z) = wa(X).
We shall prove that wg is an observable.
Let us prove wg is well-defined. Suppose that (X, A) = (Y, B), that means,
gﬁuB (X) = QEUB (Y). By Lemma 3,
wa(X) = waus(giup(X))
and
wp(Y) = waus(94us(Y)),
hence wg is a well-defined mapping.

Let us prove that wg is an observable. The bounds of the Boolean algebra Fg(S)
are [(0, A)]= and [(24, A)]=, where A € Fin(S). Obviously, by Corollary 10,

ws([(0, A)]=) =wa(@) =0

and

ws([(24, A))=) = wa(2) = 1.
Let [(X,A)]= and [(Y,B)=] be disjoint elements of Fz(S), that is, g4,5(X) N
g% ,(Y) = 0. Then

ws([(X, A)]= V (Y, B))=) = ws([94up(X) U ghup(Y), AU Bl=) =

= WAuB (gﬁuB(X) U QEUB Y)).

Since wayup is an observable,

waus(9aus(X) Ugaus(Y)) = waur (94us(X) © waus(94us(Y))-
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It remains to observe that

waun(9iup(X)) = ws([(X, 4)]=)
and that
waus(94up(Y)) = ws(((Y, B)]=).
Let us prove that the range of wg includes S. Let a € S. By Corollary 11, the
range of wy,) includes a and, by an obvious direct limit argument, the range of
W{q} is a subset of the range of wg. O



