9th Workshop Functional Analysis and its Applications, September 9-14, 2013, Nemecká, Slovakia, 50-52

HYPERREFLEXIVITY CONSTANTS — A NUMERICAL EXPERIMENT

MICHAL ZAJAC

ABSTRACT. We continue the study of hyperreflexivity constants of 1-dimensional subspaces of linear operators acting in $\ell_n^1(\mathbb{C})$ spaces [1, 3].

1. INTRODUCTION

Let m, n be positive integers and let $\mathbb{C}^{m \times n}$ be the space of all $m \times n$ complex matrices. Here we shall consider only the case m = n = 2. Matrices will be considered as linear operators acting in $\mathbb{C}^{2 \times 1}$ equipped with ℓ^1 norm.

The *reflexive cover* of a linear subspace $S \subseteq \mathbb{C}^{m \times n}$ is given by

Ref
$$\mathcal{S} = \{A \in \mathbb{C}^{m \times n}; Ax \in Sx, \forall x \in \mathbb{C}^n\}$$
.

Obviously $S \subset \operatorname{Ref} S$. If $S = \operatorname{Ref} S$, then S is said to be *reflexive*. It is well-known that every one-dimensional subspace is reflexive. Since we are working in finite dimensional spaces every reflexive space is also *hyperreflexive*, i.e. there exists the (minimal) constant $\kappa(S) \geq 1$ such that $\alpha(A, S) \leq \kappa(S) \operatorname{dist}(A, S)$ for every $A \in \mathbb{C}^{m \times n}$. Here

$$\operatorname{dist}(A, \mathcal{S}) = \min_{S \in \mathcal{S}} \|A - S\| = \min_{S \in \mathcal{S}} \max_{\|x\|=1} \|(A - S)x\|$$

denotes the usual and

$$\alpha(A, \mathcal{S}) = \max_{\|x\|=1} \min_{S \in \mathcal{S}} \left\| (A - S)x \right\|.$$

the Arveson distance of A to subspace S.

In this paper we investigate the hyperreflexivity constant of the spaces $S_k = \{\lambda J_k : \lambda \in \mathbb{C}\}$, where $k \ge 0$ and $J_k = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$. It was shown in [1] that $\kappa(S_0) = 1$ and $\kappa(S_1) = \sqrt{2}$.

In Section 2 we present some results from [3] and a new lemma that allows to perform numerical experiments. In the last section we describe the results of a numerical experiment. The computations were made using MATLAB.

2. Theoretical results

The following lemma shows that it is enough to deal with spaces S_k for $k \ge 1$.

Lemma 1. Let $k \in (0, \infty)$, $J_k = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$, and $\tilde{J}_k = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$. Put $S_k = \{\lambda J_k : \lambda \in \mathbb{C}\}$, $\tilde{S}_k = \{\lambda \tilde{J}_k : \lambda \in \mathbb{C}\}$.

For every matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2}$ and every vector $u = \begin{pmatrix} x \\ y \end{pmatrix}$ with $||u||_1 = |x| + |y| = 1$ it holds

$$\operatorname{dist}(A, \lambda J_k) = \operatorname{dist}(A, \lambda J_k), \qquad (1)$$

$$\alpha(A, \lambda J_k) = \alpha(\tilde{A}, \lambda \tilde{J}_k), \qquad (2)$$

$$\kappa(\mathcal{S}_k) = \kappa(\mathcal{S}_{1/k}) \tag{3}$$

where $\tilde{A} = \begin{pmatrix} d & c \\ b & a \end{pmatrix}$.

¹⁹⁹¹ Mathematics Subject Classification. 15A47.

Partially supported by grant VEGA 1/0426/12 of the Ministry of Education of the Slovak Republic.

Proof. (1) is an obvious consequence of the equality $||A - \lambda J_k|| = ||\tilde{A} - \lambda \tilde{J}_k||$. Assertion (2) follows from the similar equality $||(A - \lambda J_k)(x \ y)^\top||_1 = ||(\tilde{A} - \lambda \tilde{J}_k)(y \ x)^\top||_1$ and consequently $\kappa(\mathcal{S}_k) = \kappa(\tilde{\mathcal{S}}_k)$.

Now, putting $\mu = k\lambda$ we obtain for every $A \in \mathbb{C}^{2 \times 2}$

$$A - \lambda J_k = A - \mu \tilde{J}_{1/k}$$

which shows that $\kappa(J_k) = \kappa(\tilde{J}_{1/k}) = \kappa(J_{1/k}).$

The following result is a particular case of [3, Lemma 3.1] (see also [1] for the case k = 1).

Lemma 2. Let k > 0 and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then

$$dist(A, \mathcal{S}_k) = \max\{|b|, |c|, \frac{1}{1+k}(|ka-d|+|b|+|kc|)\}.$$
(4)

Now we use Lemma 2 to further reduction of computations. It is obvious that

$$\kappa(\mathcal{S}_k) = \sup\left\{\frac{\operatorname{dist}(A,\mathcal{S}_k)}{\alpha(A,\mathcal{S}_k)} : A \in \mathbb{C}^{2 \times 2}, \ A \notin \mathcal{S}_k\right\}.$$
(5)

Since both functions $A \to \text{dist}(A, S_k)$ and $A \to \alpha(A, S_k)$ are seminors we may and do assume that $\text{dist}(A, S_k) = 1$. Moreover, it is easy to see that we may also assume that (2, 2)-entry of A is zero. More precisely [3, Lemma 3.2]

$$\kappa(\mathcal{S}_k) = \sup_{A \in \mathcal{A}} \frac{1}{\alpha(A, \mathcal{S}_k)}, \qquad (6)$$

where

$$\mathcal{A} = \left\{ \left(\begin{smallmatrix} a & be^{i\beta} \\ ce^{i\gamma} & 0 \end{smallmatrix} \right) : 1 > b, c \ge 0, b + c > 0, a = \frac{1}{k} (1 + k - b - kc), \ \beta, \gamma \in (-\pi, \pi] \right\}.$$

Finally, to compute $\max_{\|x\|=1} \min_{\lambda \in \mathbb{C}} \|(A - \lambda J_k)x\|$ for $A \in \mathcal{A}$ it is enough to take $x = (r, (1-r)e^{i\phi})^{\top}, \ 0 < r < 1, \ \phi \in (-\pi, \pi]$. In this case, by [3, Theorem 3.3],

$$\min_{\lambda \in \mathbb{C}} \| (A - \lambda J_k) x \| = \min\{r, k(1 - r)\} \Big| a + b \frac{(1 - r)}{r} e^{i\phi} - \frac{cr}{k(1 - r)} e^{-i\phi} \Big|.$$
(7)

3. A NUMERICAL EXPERIMENT

Relations (6) and (7) can be used to write a MATLAB program which computes $\kappa(S_k)$ (See Appendix). The numerical results are summarized in Tab. 1. Based on those computations we formulate

Conjecture 3.
$$\kappa(\mathcal{S}_k) \leq \sqrt{2}$$
 for all $k > 0$ and $\lim_{k \to \infty} \kappa(\mathcal{S}_k) = \lim_{k \to 0} \kappa(\mathcal{S}_k) = 1$.

Remark 4. It is known that in Hilbert space 1-dimensional subspaces have hyperreflexivity constant equal to 1 [2]. Using inequalities

$$||x||_2 = \sqrt{x_1^2 + x_2^2} \le ||x||_1 = |x_1| + |x_2|, \quad ||x||_1 \le \sqrt{2} ||x||_2$$

it is easy to prove that $1 \leq \kappa(S_k) \leq 2$ for all k > 0. 1-dimensional subspaces having $\kappa(S) = 1$ are known [1, Theorem 1]. So it is natural to ask whether there exist a 1-dimensional subspace S of 2×2 matrices having $\kappa(S) = 2$.

$\frac{1}{1000} = 1.10000000000000000000000000000000000$											
				1.6							
$\kappa(\mathcal{S}_k)$	1.41421	1.41274	1.41342	1.41354	1.41406	1.41421	1.40985	1.40465	1.39984	1.39247	1.38442
k	3.5	4	4.5	5	6	7	8	9	10	11	12
$\kappa(\mathcal{S}_k)$	1.36379	1.34164	1.31864	1.29532	1.25000	1.24998	1.21622	1.19048	1.17021	1.15385	1.14035
				20			35				200
$\kappa(\mathcal{S}_k)$	1.12903	1.11940	1.11111	1.093750	1.07438	1.06164	1.05263	1.04592	1.03659	1.01815	1.00903

Table 1. Results of computing $\kappa(S_k)$

MICHAL ZAJAC

References

- J. Bračič, V. Rozborová, M. Zajac, Hyperreflexivity constants of some spaces of matrices, Linear Algebra Appl. 439 (2013), 1340–1349
- [2] B. Magajna, On the distance to finite-dimensional subspaces in operator algebra, J. London Math. Soc. 47 (1993), 516–532.
- [3] V. Rozborová, *Hyperreflexivity constants of spaces of matrices*, Proceedings of the 15th Conference ELITECH'13, Faculty of Electrical Engineering and Information Technology STU, Bratislava, June 2013.

Appendix — MATLAB program.

```
clc; clear all
for k=1:0.2:2; % computes \kappa(S_k) for k=1, 1.2, ..., 1.9, 2
    r1 = (k/(k+1)); h1 = (r1-0.01)/10; h2 = (1-r1)/10; \% steps for x_1
    h=0.1; %step for entries of matrix A
    m2=1; %initializing of minimal \alpha(A, \mathcal{S}_k)
    for b1=0.1:h:1 %abs hodnota A[12]
         for c1=0:h:0.9; %abs. value of A[21]
         m1=max([c1 b1]); % first estimate of \alpha(A, \mathcal{S}_k) (for r=1,r=0)
         a = ((1-b1)/k) + (1-c1); \%A[11]
              for t1=-1:h:1-h; b=b1*exp(i*t1*pi); %A[12]/\pi
                   for t2=-1:h:1-h; c=c1*exp(i*t2*pi); %A[21]
                        for r=0.01:h1:r1-h1; %x1
                             for t3=-1:0.05:0.95; %(arg x2)/\pi
                             x1=r; x2=(1-r)*exp(i*t3*pi); %unit vector x=(x1,x2)
                             ALPHAx = (abs(a*x1+b*x2-(c*r*r)/(k*x2)));
                             m1 = max([m1 ALPHAx]);
                             \mathbf{end}
                        \mathbf{end}
                        for r=r1:h2:1-h2:
                             for t3=-1:0.05:0.95; %arg x2/pi
                             x1=r; x2=(1-r)*exp(i*t3*pi); %jednotkovy vektor x
                             ALPHAx = abs((k*x2*a)+((b*k*x2*x2)/x1)-(c*x1));
                             \mathbf{end}
                        end
                        m2 = min([m2 m1]);
                   \mathbf{end}
              end
         end
    end
k kappa=1/m2 %output: k, \kappa(S_k), i.e., actual k and kappa(S_k) are displayed
\mathbf{end}
```

INSTITUTE OF COMPUTER SCIENCE AND MATHEMATICS, FEI STU, ILKOVIČOVA 3, SK-812 19 BRATSIALAVA *E-mail address:* michal.zajac@stuba.sk