9th Workshop Functional Analysis and its Applications, September 9-14, 2013, Nemecká, Slovakia, 39-41

SUBSETS OF BOUNDED POSITIVE OPERATORS MAY FORM GENERALIZED EFFECT ALGEBRAS

MARCEL POLAKOVIČ

1. INTRODUCTION AND PRELIMINARIES

This contribution is based on the work [3].

Effect algebra is a structure introduced by Foulis and Bennett in [2]. The prototype of this structure is the set of Hilbert space effects $\mathcal{E}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) \mid 0 \le A \le I\}$. The corresponding effect algebraic operation \oplus is (a restriction of) the usual addition of operators.

Let \mathcal{H} be an infinite-dimensional separable complex Hilbert space. Let $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators on \mathcal{H} , $\mathcal{B}_p(\mathcal{H})$ is the set of all bounded positive linear operators on \mathcal{H} . The set of all compact operators on \mathcal{H} is denoted by $\operatorname{Com}(\mathcal{H})$, the set of all positive compact operators on \mathcal{H} is denoted by $\operatorname{Com}_p(\mathcal{H})$. The set of all trace-class operators on \mathcal{H} is denoted by $\mathcal{J}_1(\mathcal{H})$, the set of all positive trace-class operators on \mathcal{H} is denoted by $\mathcal{J}_{1p}(\mathcal{H})$. The set of all Hilbert-Schmidt operators on \mathcal{H} is denoted by $\mathcal{J}_2(\mathcal{H})$, the set of all positive Hilbert-Schmidt operators on \mathcal{H} is denoted by $\mathcal{J}_{2p}(\mathcal{H})$.

Now we give some definitions and basic facts about quantum structures.

Definition 1 (Foulis and Bennett, [2]). A partial algebra $(E; \oplus, 0, 1)$ is called an *effect algebra* if 0,1 are two distinct elements and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

- (E1) $x \oplus y = y \oplus x$ if $x \oplus y$ is defined,
- (E2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,
- (E3) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put x' = y),
- (E4) If $1 \oplus x$ is defined then x = 0.

Definition 2. Let E be an effect algebra. Then $Q \subseteq E$ is called a *sub-effect algebra* of E if

(i)
$$1 \in Q$$
.

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

Definition 3. (1) A generalized effect algebra $(E; \oplus, 0)$ is a set E with an element $0 \in E$ and partial binary operation \oplus satisfying for any $x, y, z \in E$ conditions

(GE1) $x \oplus y = y \oplus x$ if one side is defined,

(GE2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,

- (GE3) If $x \oplus y = x \oplus z$ then y = z,
- (GE4) If $x \oplus y = 0$ then x = y = 0,
- (GE5) $x \oplus 0 = x$ for all $x \in E$.

(2) Define a binary relation \leq on E by

 $x \leq y$ iff for some $z \in E, x \oplus z = y$.

(3) $Q \subseteq E$ is called a *sub-generalized effect algebra* of E if and only if out of elements $x, y, z \in E$ with $x \oplus y = z$ at least two are in Q then $x, y, z \in Q$.

Note that every sub-generalized effect algebra of E is a generalized effect algebra in its own right.

The well known facts are that the relation \leq in Definition 3 is a partial order on E for which 0 is the least element of E. Moreover, E is an effect algebra iff E has a greatest element 1.

The work was supported by the grant VEGA-1/0426/12.

Further, if $(E; \oplus, 0, 1)$ is an effect algebra, then $(E; \oplus, 0)$ is a generalized effect algebra (with the same operation \oplus) (see [1]).

Assume that $(E; \oplus, 0)$ is a generalized effect algebra. Then (see, e.g., [5]) for any fixed $q \in E$, $q \neq 0$ the interval

 $[0,q]_E = \{x \in E \mid \text{there exists } y \in E \text{ with } x \oplus y = q\}$

is an effect algebra $([0,q]_E; \oplus_q, 0, q)$ with unit q and with the partial operation \oplus_q defined for $x, y \in [0,q]_E$ by

 $x \oplus_q y$ exists and $x \oplus_q y = x \oplus y$ iff $x \oplus y \in [0, q]_E$ exists in E.

Then, as it follows from the previous, $([0, q]_E; \oplus_q, 0)$ is a generalized effect algebra in the natural sense.

Let us define the operation \oplus on $\mathcal{B}_p(\mathcal{H})$ by $A \oplus B = A + B$ (the usual sum of operators) and let 0 denote the null operator. The next Proposition is a straightforward consequence of Theorem 3.5 in [4].

Proposition 4. $(\mathcal{B}_p(\mathcal{H}); \oplus, 0)$ is a generalized effect algebra and \oplus is a total operation.

A standard partial ordering \leq on $\mathcal{B}_p(\mathcal{H})$ is defined in following way:

 $A \leq B$ iff B - A is a positive operator.

Let us consider the set of Hilbert space effects

$$\mathcal{E}(\mathcal{H}) = \{ A \in \mathcal{B}_p(\mathcal{H}) \mid 0 \le A \le I \}$$

where I is the identity operator. It is an effect algebra [2] $(\mathcal{E}(\mathcal{H}); \oplus_I, 0, I)$ with the partial effectalgebraic operation \oplus_I being the restriction of the usual sum of operators to the set $\mathcal{E}(\mathcal{H})$ (for $A, B \in \mathcal{E}(\mathcal{H}), A \oplus_I B = A + B$ is defined iff $A + B \in \mathcal{E}(\mathcal{H})$). Consequently, it is a generalized effect algebra $([0, I]_{\mathcal{B}_p(\mathcal{H})}; \oplus_I, 0)$. (Of course, $\mathcal{E}(\mathcal{H}) = [0, I]_{\mathcal{B}_p(\mathcal{H})}$.)

In the present paper, we show more examples of generalized effect algebras of bounded operators on Hilbert space. They are positive compact operators, positive Hilbert-Schmidt operators and positive trace-class operators. All these are sub-generalized effect algebras of the generalized effect algebra of bounded positive operators (with the \oplus operation being the usual addition of operators). Moreover, three nontrivial sub-generalized effect algebras of $\mathcal{E}(\mathcal{H})$ (regarded as a generalized effect algebra) are shown. They are the sets of compact, Hilbert-Schmidt and traceclass operators intersected with the set $\mathcal{E}(\mathcal{H})$. These results are stated also in a more general form.

2. Results

Theorem 5. Let \mathcal{L} be a linear subspace of $\mathcal{B}(\mathcal{H})$. Then the set $\mathcal{L}_p = \mathcal{L} \cap \mathcal{B}_p(\mathcal{H})$ of positive operators in \mathcal{L} is a sub-generalized effect algebra of $(\mathcal{B}_p(\mathcal{H}); \oplus, 0)$ with respect to inherited \oplus -operation. Hence it is a generalized effect algebra in its own right.

Corollary 6. The sets $\operatorname{Com}_p(\mathcal{H}), \mathcal{J}_{2p}(\mathcal{H})$ and $\mathcal{J}_{1p}(\mathcal{H})$ are sub-generalized effect algebras of $(\mathcal{B}_p(\mathcal{H}); \oplus, 0)$ with respect to inherited \oplus -operations. Hence they are generalized effect algebras in their own right.

Let

$$\begin{aligned} \mathcal{E}_{\mathrm{Com}}(\mathcal{H}) &= [0, I]_{\mathcal{B}_{p}(\mathcal{H})} \cap \mathrm{Com}(\mathcal{H}), \\ \mathcal{E}_{\mathcal{J}_{2}}(\mathcal{H}) &= [0, I]_{\mathcal{B}_{p}(\mathcal{H})} \cap \mathcal{J}_{2}(\mathcal{H}), \\ \mathcal{E}_{\mathcal{J}_{1}}(\mathcal{H}) &= [0, I]_{\mathcal{B}_{p}(\mathcal{H})} \cap \mathcal{J}_{1}(\mathcal{H}). \end{aligned}$$

All of them are special cases of

 $\mathcal{E}_{\mathcal{L}}(\mathcal{H}) = [0, I]_{\mathcal{B}_p(\mathcal{H})} \cap \mathcal{L}$

where \mathcal{L} is an arbitrary linear subspace of $\mathcal{B}(\mathcal{H})$.

Theorem 7. Let \mathcal{L} be a linear subspace of $\mathcal{B}(\mathcal{H})$. Then the set $\mathcal{E}_{\mathcal{L}}(\mathcal{H})$ is a sub-generalized effect algebra of the generalized effect algebra $\mathcal{E}(\mathcal{H})$. In particular, each of the sets $\mathcal{E}_{\mathcal{J}_1}(\mathcal{H})$, $\mathcal{E}_{\mathcal{J}_2}(\mathcal{H})$, $\mathcal{E}_{\text{Com}}(\mathcal{H})$ form a (nontrivial) sub-generalized effect algebra of $\mathcal{E}(\mathcal{H})$. Moreover,

$$\emptyset \neq \mathcal{E}_{\mathcal{J}_1}(\mathcal{H}) \subsetneqq \mathcal{E}_{\mathcal{J}_2}(\mathcal{H}) \subsetneqq \mathcal{E}_{\mathrm{Com}}(\mathcal{H}) \subsetneqq \mathcal{E}(\mathcal{H}).$$

Remark. As $\mathcal{J}_1(\mathcal{H}) \subseteq \mathcal{J}_2(\mathcal{H}) \subseteq \operatorname{Com}(\mathcal{H})$ and it is well-known that $I \notin \operatorname{Com}(\mathcal{H})$ for infinitedimensional \mathcal{H} , we have $I \notin \mathcal{E}_{\operatorname{Com}}(\mathcal{H}), I \notin \mathcal{E}_{\mathcal{J}_2}(\mathcal{H}), I \notin \mathcal{E}_{\mathcal{J}_1}(\mathcal{H})$, so the sets $\mathcal{E}_{\operatorname{Com}}(\mathcal{H}), \mathcal{E}_{\mathcal{J}_2}(\mathcal{H}), \mathcal{E}_{\mathcal{J}_1}(\mathcal{H})$ are not sub-effect algebras of $\mathcal{E}(\mathcal{H})$ as I is the top element of the effect algebra $\mathcal{E}(\mathcal{H})$ (see Definition 2 (i)).

As $(\mathcal{B}_p(\mathcal{H}); \oplus, 0)$ is a generalized effect algebra, for arbitrary $A \in \mathcal{B}_p(\mathcal{H}), A \neq 0$ the interval $[0, A]_{\mathcal{B}_p(\mathcal{H})}$ is an effect algebra which is a generalized effect algebra in the natural sense. A special example is the choice A = I when we get the interval $\mathcal{E}(\mathcal{H}) = [0, I]_{\mathcal{B}_p(\mathcal{H})}$. For \mathcal{L} being an arbitrary linear subspace of $\mathcal{B}(\mathcal{H})$ we have that $\mathcal{E}_{\mathcal{L}}(\mathcal{H})$ is a sub-generalized effect algebra of $\mathcal{E}(\mathcal{H})$. The same argument shows that for $A \in \mathcal{B}_p(\mathcal{H}), A \neq 0$ being arbitrary, the set

$$\mathcal{E}_{A\mathcal{L}}(\mathcal{H}) = [0, A]_{\mathcal{B}_n(\mathcal{H})} \cap \mathcal{L}$$

is a sub-generalized effect algebra of the generalized effect algebra $\mathcal{E}_A(\mathcal{H}) = [0, A]_{\mathcal{B}_p(\mathcal{H})}$. If we specify \mathcal{L} to be one of the sets $\mathcal{J}_1(\mathcal{H}), \mathcal{J}_2(\mathcal{H}), \operatorname{Com}(\mathcal{H})$, we conclude that the sets

- (1) $\mathcal{E}_{A\mathcal{J}_1}(\mathcal{H}) = [0, A]_{\mathcal{B}_p(\mathcal{H})} \cap \mathcal{J}_1(\mathcal{H}),$
- (2) $\mathcal{E}_{A\mathcal{J}_2}(\mathcal{H}) = [0, A]_{\mathcal{B}_p(\mathcal{H})} \cap \mathcal{J}_2(\mathcal{H})$

and

$$\mathcal{E}_{ACom}(\mathcal{H}) = [0, A]_{\mathcal{B}_p(\mathcal{H})} \cap Com(\mathcal{H})$$

are sub-generalized effect algebras of $\mathcal{E}_A(\mathcal{H})$. In the special case A = I, we have that these sets $(\mathcal{E}_{A\mathcal{J}_1}(\mathcal{H}) = \mathcal{E}_{\mathcal{J}_1}(\mathcal{H}), \mathcal{E}_{A\mathcal{J}_2}(\mathcal{H}) = \mathcal{E}_{\mathcal{J}_2}(\mathcal{H}), \mathcal{E}_{ACom}(\mathcal{H}) = \mathcal{E}_{Com}(\mathcal{H}))$ are mutually different and different from $\mathcal{E}(\mathcal{H}) = \mathcal{E}_I(\mathcal{H})$. There arises a natural question if this is satisfied also for general $A \neq I$. The following Theorem shows that for arbitrary positive $A \in \mathcal{J}_1(\mathcal{H})$ the answer is negative.

Theorem 8. Let $A \in \mathcal{B}_p(\mathcal{H}) \cap \mathcal{J}_1(\mathcal{H})$. Then

$$\mathcal{E}_{A\mathcal{J}_1}(\mathcal{H}) = \mathcal{E}_{A\mathcal{J}_2}(\mathcal{H}) = \mathcal{E}_{A\mathrm{Com}}(\mathcal{H}) = \mathcal{E}_A(\mathcal{H}).$$

References

- [1] A. Dvurečenskij, S. Pulmannová, New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.
- [2] D.J. Foulis, M.K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
 [3] M. Polakovič, Generalized effect algebras of bounded positive operators defined on Hilbert spaces, Rep. Math. Phys. 68 (2011), 241–250.
- [4] M. Polakovič, Z. Riečanová, Generalized effect algebras of positive operators densely defined on Hilbert spaces, Int. J. Theor. Phys 50 (2011), 1167–1174.
- [5] Z. Riečanová, Subalgebras, intervals and central elements of generalized effect algebras, Int. J. Theor. Phys. 39 (1999), 3209–3220.

INSTITUTE OF COMPUTER SCIENCE AND MATHEMATICS, DEPARTMENT OF MATHEMATICS, SLOVAK UNIVER-SITY OF TECHNOLOGY, FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY, BRATISLAVA, SLOVAKIA

E-mail address: marcel.polakovic@stuba.sk