
DUAL ALGEBRAS AND A-MEASURES.

MAREK KOSIEK AND KRZYSZTOF RUDOL

9th Workshop Functional Analysis and its Applications, September 9–14, 2013, Nemecká, Slovakia, 30–32

Let A be an arbitrary function algebra. The main subject of our investigation are properties
of the spectrum of A∗∗.

Motivation:

• A - measures problem
• the problem for which G ⊂ Cn the algebra H∞(G) is a dual algebra
• the application of dual algebras in functional calculus for bounded operators in Hilbert

spaces
• connections with the Corona problem

As an application of our main result we have obtained:

• a general positive solution for A - measures problem
• the duality of H∞(G) algebra for some classes of bounded domains G ⊂ Cn

Definition 1. A is a function algebra on a compact set X iff A ⊂ C(X), A contains constants
and separates the points of X

Let φ, ψ ∈ σ(A)

φ ∼ ψ df⇐⇒ ‖φ− ψ‖ < 2

Definition 2. The equivalence classes in the above equivalence relation are called Gleason parts
of A.

We assume σ(A) = X.
Denote by M(X) the Banach space of all complex Borel regular measures on X equiped by

the total variation norm. A set M ⊂ M(X) = C(X)∗ is a band if it is a closed subspace and
µ ∈ M, ν � |µ| =⇒ ν ∈ M. Every measure µ ∈M(X) has a unique Lebesque decomposition
µ = µM + µs where µM ∈ M and µs is singular to each measure in M. We say that M is a
reducing band (with respect to A) if µ ∈ A⊥ =⇒ µM ∈ A⊥. A measure ν is a representing
measure for x ∈ X = σ(A) if f(x) =

∫
f dν for f ∈ A For a subset G of X we denote by MG

the band generated by G i.e. the smallest band containing all measures representing for points
in G. If G is a Gleason part then MG is a reducing band.

Since C(X)∗∗ := (C(X)∗)∗ is a commutative, symmetric C∗ algebra, by Gelfand-Naimark
theorem there exist a hyperstonean compact space Y such that C(X)∗∗ = M(X)∗ ≈ C(Y ) in
the sense of isometric isomorphism. Each f ∈ C(X) can be treated as a functional on M(X)
and consequently as an element of C(Y ) by the formula

〈f, µ〉 =

∫
f dµ for µ ∈M(X).

For µ ∈M(X) there is a unique measure µ̃ ∈M(Y ) := C(Y )∗ such that 〈F, µ〉 =
∫
F dµ̃ for all

F ∈ C(Y ).

Theorem 3. If G is a Gleason part of A then the weak-star closure G
ws

of G in Y is a closed-
open subset of Y . Moreover

Y \Gws = X \Gws, (MG
ws

)s = (Ms
G)

ws
, MG

ws
= M(G

ws
),

and MG
ws

is a reducing band for A∗∗.
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Corollary 4. There exists a characteristic function F0 ∈ A∗∗ vanishing exactly on Y \ Gws

and the projection associated with the decomposition M(Y ) = MG
ws

+Ms
G
ws

is exactly the
multiplication by F0.

Corollary 5. If G is a Gleason part of a function algebra A, x ∈ G and µx is any its representing
measure, then µx is concentrated on the weak-star closure of G.

We assume that G is a Gleason part of A and denote by H∞(MG) - the weak-star closure of
A in M∗G. By the definition of H∞(MG), the values of its every element are uniquely defined
on each x ∈ G.

Proposition 6. H∞(MG) is isometrically isomorphic to A∗∗/M⊥G∩A∗∗

Corollary 7. G is a subset of the spectrum of H∞(MG).

Theorem 8. If G is a Gleason part of A, then H∞(MG) satisfies the domination condition:

‖f‖ = sup
x∈G
|f(x)| for any f ∈ H∞(MG).

Proposition 9. The band MG is equal to the norm closed linear span of all representing mea-
sures for points in G, taken in the quotient space M(X)/A⊥.

For f ∈ H∞(MG) and z ∈ G we can define f(z) as the value of f on a representing measure
νz for z. By the weak-star density of A in H∞(MG), the value f(z) does not depend on the
choice of representing measure. So the elements of H∞(MG) can be regarded as functions on
G.

Proposition 10. If G is a bounded domain in Cn and f ∈ H∞(MG) then the defined above
mapping z → f(z) is a bounded analytic function of z ∈ G.

Proposition 11. If G is a star-shaped domain in Cn such that G is the spectrum of A(G),
then the algebras H∞(G) and H∞(MG) are isometrically isomorphic. Hence H∞(G) is a dual
algebra.

Open problem. Is σ(A∗∗) = Y/(A∗∗)⊥ , where Y is the spectrum of C(X)∗∗?

Consequences. If the above open problem would have a positive solution, then the Corona
problem would have a positive solution for the case when H∞(G) and H∞(MG) are isometrically
isomorphic.

Assume Q =
⋃
αGα, where for each α, Gα is a Gleason part of A.

Definition 12. We say that a measure µ ∈ M(X) is an A-measure (or analytic measure, or
a Henkin measure) with respect to the the set Q if

∫
un dµ → 0 whenever {un}∞n=1 ⊂ A is a

bounded sequence converging to 0 pointwise on Q.

A-measures problem for the algebra A at the points of Q. Does the absolute continuity
of a measure µ on X with respect to some representing measure of a point x ∈ Q imply that µ
is an A-measure?

Another formulation. Is any measure which is absolutely continuous with respect to a
positive A-measure, itself an A-measure?

Theorem 13. If A is a function algebra on X and Q ⊂ X is equal to a countable union of
its Gleason parts, then A-measures problem for the algebra A at the points of Q has a positive
solution.

Corollary 14. The A-measures problem at the points of Q = G for A(G) has a positive solution
if G is either a strictly pseudoconvex set in Cn, or a Carthesian product of a finite number of
such domains.

This includes polydiscs, polydomains (products of bounded plane domains), but also products
of balls with polydiscs.
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Theorem 15. A-measures problem for the algebra A = H∞(G) at all points of a countable
union Q of its arbitrary Gleason parts has a positive solution. In particular, if G is a star-
shaped domain in Cn such that G is the spectrum of A(G), then A-measures problem for H∞(G)
at all points of G has a positive solution.

Before our results, A-measures problem was solved positively by advanced complex analysis
methods for two special cases:

• by Cole and Range for X being the closure of a strictly pseudoconvex bounded domain
Q in Cn with C2 boundary, and A being the algebra of all complex continuous functions
on X which are holomorphic on its interior Q
• by Bekken and Bui Doan Khanh in the case of the cartesian product of compact planar

sets for two classes of algebras - for algebras of continuous functions which are holomor-
phic on the interior and for algebras generated by rational functions with singularities
off X

Both above cases are covered by our results.
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