SET OF OPERATORS WITH 0 IN THE CLOSURE OF THE NUMERICAL RANGE

JANKO BRAČIČ AND CRISTINA DIOGO

1. INTRODUCTION

Let \mathscr{H} be a complex Hilbert space. Denote by $\mathcal{B}(\mathscr{H})$ the Banach algebra of all bounded linear operators on \mathscr{H} and by $\mathcal{S}_{\mathscr{H}} = \{x \in \mathscr{H}; \|x\| = 1\}$ the unit sphere of \mathscr{H} . The numerical range of $A \in \mathcal{B}(\mathscr{H})$ is

$$W(A) = \{ \langle Ax, x \rangle; \ x \in \mathcal{S}_{\mathscr{H}} \}.$$

It is obvious that W(A) is a non-empty subset of \mathbb{C} which is contained in the disk $\{z \in \mathbb{C}; |z| \leq |A||\}$. If dim $(\mathscr{H}) < \infty$, then W(A) is a closed set. However, if \mathscr{H} is not finite-dimensional, then the numerical range is not closed, in general. For instance, the numerical range of the backward shift on ℓ^2 is the open unit disk. One among the basic properties of the numerical range is its convexity.

It is well-known that the spectrum of A is contained in the closure of the numerical range, i.e., $\sigma(A) \subseteq \overline{W(A)}$. Because of the convexity of the numerical range, one actually has $\operatorname{conv}(\sigma(A)) \subseteq \overline{W(A)}$, where $\operatorname{conv}(\cdot)$ denotes the convex hull of a set. For some operators the opposite inclusion holds, as well — normal operators have this property, for instance — but for a general operator the above inclusion can be proper. However Hildebrandt [2] has proved the following theorem.

Theorem 1. For every $A \in \mathcal{B}(\mathcal{H})$, one has $\operatorname{conv}(\sigma(A)) = \bigcap_{\substack{S \in \mathcal{B}(\mathcal{H}) \\ invertible}} \overline{W(SAS^{-1})}$.

2. Main result

Let $\mathscr{W}_{\{0\}} = \{A \in \mathcal{B}(\mathscr{H}); 0 \in \overline{W(A)}\}$. It is obvious that this is a proper non-empty subset of $\mathcal{B}(\mathscr{H})$. It is not hard to see that it is closed in the norm topology. As the following proposition shows, set $\mathscr{W}_{\{0\}}$ is quite large.

Proposition 2. If dim $(\mathscr{H}) \geq k + 1$, then $\mathscr{W}_{\{0\}}$ is k-transitive, that is, for every linearly independent vectors $x_1, \ldots, x_k \in \mathscr{H}$ and for every set of k vectors $\{y_1, \ldots, y_k\} \subseteq \mathscr{H}$ there exists an operator $A \in \mathscr{W}_{\{0\}}$ such that $Ax_i = y_i$ $(i = 1, \ldots, k)$.

Proof. Note that the set of all singular operators is contained in $\mathscr{W}_{\{0\}}$. It is not hard to see that actually the set of singular operators is k-transitive. Indeed, let $x_1, \ldots, x_k \in \mathscr{H}$ be linearly independent and let $\{y_1, \ldots, y_k\} \subseteq \mathscr{H}$ be an arbitrary set of k vectors. Since $\dim(\mathscr{H}) \geq k+1$ there exists a vector $e \in S_{\mathscr{H}}$ such that $x_i \perp e$ for every $i = 1, \ldots, k$. Because of linear independence of vectors e, x_1, \ldots, x_k there exists $A \in \mathcal{B}(\mathscr{H})$ such that Ae = 0 and $Ax_i = y_i$ $(i = 1, \ldots, k)$.

Set $\mathscr{W}_{\{0\}}$ is not closed under addition or multiplication. For instance, let $P \neq 0, I$ be an orthogonal projection. Then P, I - P, and the involution U = 2P - I are in $\mathscr{W}_{\{0\}}$, but P + (I - P) = I and $U^2 = I$ are not in $\mathscr{W}_{\{0\}}$. However, $\mathscr{W}_{\{0\}}$ has less obvious algebraic structures which can be described in the following way. Let $\mathcal{P} \subseteq \mathcal{B}(\mathscr{H})$ be a given set of operators. Then there exist the largest sets $\mathcal{Q}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \subseteq \mathcal{B}(\mathscr{H})$ such that $\mathcal{P}\mathcal{Q}_{\mathcal{P}} \subseteq \mathscr{W}_{\{0\}}$ and $\mathcal{R}_{\mathcal{P}}\mathcal{P} \subseteq \mathscr{W}_{\{0\}}$, where $\mathcal{P}\mathcal{Q}_{\mathcal{P}}$

²⁰¹⁰ Mathematics Subject Classification. 47A12.

The work was partially supported by FCT through the Program POCI 2010/FEDER and the project PTDC/MAT/121837/2010, Portugal.

is the set of all products PQ with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}_{\mathcal{P}}$; $\mathcal{R}_{\mathcal{P}}\mathcal{P}$ has a similar meaning. It follows from the part (i) of the following proposition that it is enough to study only one variant of the problem. We use the following notation: for $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ let $\mathcal{A}^* = \{A^*; A \in \mathcal{A}\}$.

Proposition 3. Let $\mathcal{P}, \mathcal{P}_1$, and \mathcal{P}_2 be arbitrary non-empty subsets of $\mathcal{B}(\mathcal{H})$. Then

(i) $(\mathcal{Q}_{\mathcal{P}})^* = \mathcal{R}_{\mathcal{P}^*};$ (ii) if $I \in \mathcal{P}$, then $\mathcal{Q}_{\mathcal{P}} \subseteq \mathscr{W}_{\{0\}};$ (iii) if $\mathcal{P}_1 \subseteq \mathcal{P}_2$, then $\mathcal{Q}_{\mathcal{P}_1} \supseteq \mathcal{Q}_{\mathcal{P}_2}.$

We omit a simple proof of this proposition.

For $\mathcal{P} = \mathcal{B}_+$, the set of all positive semidefinite operators on \mathscr{H} , we have an interesting description of $\mathcal{Q}_{\mathcal{B}_+}$. In the proof we need the following simple fact. If $F \subseteq \mathbb{C}$ is a nonempty set and $w \in \mathbb{C}$, then let $\operatorname{dist}(w, F) = \inf\{|w - z|; z \in F\}$ and, for $\varepsilon > 0$, let $F_{\varepsilon} = \{w \in \mathbb{C}; \operatorname{dist}(w, F) \leq \varepsilon\}$ denote the ε -hull of F. It is not hard to see that $\bigcap_{\varepsilon} F_{\varepsilon} = \overline{F}$.

Theorem 4. $\mathcal{Q}_{\mathcal{B}_+} = \{A \in \mathcal{B}(\mathscr{H}); 0 \in \operatorname{conv}(\sigma(A))\}.$

Proof. Suppose that $0 \in \operatorname{conv}(\sigma(A))$ and let $P \in \mathcal{B}_+$. If A or P is not invertible, then $0 \in \sigma(PA) \subseteq \overline{W(PA)}$. Assume therefore that A and P are invertible. It follows that there exists p > 0 such that $\overline{W(P)} \subseteq [p, \infty)$. Since $0 \in \operatorname{conv}(\sigma(A))$ there exist $\lambda, \mu \in \partial \sigma(A)$ such that $0 = t\lambda + (1-t)\mu$ for some $t \in [0, 1]$. Numbers λ and μ are approximate eigenvalues of A, which means that there exist sequences $\{e_n\}_{n=1}^{\infty}, \{f_n\}_{n=1}^{\infty} \subseteq S_{\mathscr{H}}$ such that $\lim_{n \to \infty} ||(A - \lambda I)e_n|| = 0$ and $\lim_{n \to \infty} ||(A - \mu I)f_n|| = 0$. Let m be a positive integer. Then there exists an index n_m such that $||(A - \lambda I)e_n|| < \frac{1}{m}$ and $||(A - \mu I)f_n|| < \frac{1}{m}$ for all $n \ge n_m$. Fix $n \ge n_m$ and denote $\omega_m = \langle Pe_n, e_n \rangle, \vartheta_m = \langle Pf_n, f_n \rangle$. Note that $\omega_m \ge p$ and $\vartheta_m \ge p$. One has

$$|\langle PAe_n, e_n \rangle - \lambda \omega_m| = |\langle P(A - \lambda I)e_n, e_n \rangle| \le ||P|| ||(A - \lambda I)e_n|| < \frac{||P||}{m}$$

and, similarly, $|\langle PAf_n, f_n \rangle - \mu \vartheta_m| < ||P||/m$. Thus, $\lambda \omega_m$ and $\mu \vartheta_m$ are in the $\frac{||P||}{m}$ -hull of $\overline{W(PA)}$. Since $\{\lambda \omega_m\}_{m=1}^{\infty}$ is a bounded sequence there exists a convergent subsequence, say $\{\lambda \omega_{m_k}\}_{k=1}^{\infty}$, which converges to $\lambda \omega$. It is obvious that this limit is in $\overline{W(PA)}$. Observe that $\omega \ge p$. The same reasoning gives $\vartheta \ge p$ such that $\mu \vartheta \in \overline{W(PA)}$. Denote $s_1 = t\vartheta/(t\vartheta + (1-t)\omega) \ge 0$ and $s_2 = (1-t)\omega/(t\vartheta + (1-t)\omega) \ge 0$. It is easily seen that $s_1 + s_2 = 1$ and $s_1(\lambda \omega) + s_2(\mu \vartheta) = 0$, which means that $0 \in \overline{W(PA)}$.

Assume now that $A \in \mathcal{Q}_{\mathcal{B}_+}$. Let $S \in \mathcal{B}(\mathscr{H})$ be an arbitrary invertible operator. Denote $P = S^*S \in \mathcal{B}_+$. Let $\varepsilon > 0$ be arbitrary. Since $0 \in \overline{W(PA)}$ there exists $x \in \mathcal{S}_{\mathscr{H}}$ (which may depend on ε) such that $|\langle PAx, x \rangle| < \varepsilon$. Let $y = \frac{1}{\|Sx\|}Sx \in \mathcal{S}_{\mathscr{H}}$. One has $|\langle SAS^{-1}y, y \rangle| = \|Sx\|^{-2}|\langle SAS^{-1}Sx, Sx \rangle| = \|Sx\|^{-2}|\langle PAx, x \rangle| < \|Sx\|^{-2}\varepsilon \leq \|S^{-1}\|^2\varepsilon$. Since ε is arbitrary we conclude that $0 \in \overline{W(SAS^{-1})}$. As S is an arbitrary invertible operator we have, by Theorem 1, $0 \in \operatorname{conv}(\sigma(A))$.

References

[1] J. Bračič, C. Diogo, Operators with a given part of the numerical range, Math. Slovaca, accepted.

[2] S. Hildebrandt, Über den Numerischen Wertebereich eines Operators, Math. Ann. 163 (1966), 230-247.

UNIVERSITY OF LJUBLJANA, IMFM, JADRANSKA UL. 19, 1000 LJUBLJANA, SLOVENIA *E-mail address*: janko.bracic@fmf.uni-lj.si

Instituto Universitário de Lisboa (ISCTE-IUL), Avenida das Forças Armadas, P-1649-026 Lisboa and Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matemática, Instituto Superior Técnico, P-1049-001 Lisboa, Portugal

E-mail address: cristina.diogo@iscte.pt