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Abstract. We deal with a dynamic contact problem for a thermoelastic plate vibrating against
a rigid obstacle. Dynamics is described by a hyperbolic variational inequality for deflections.
The plate is subjected to a perpendicular force and to a heat source. The parabolic equation
for the change of the temperature contains the time derivative of the deflection. We formulate
a weak solution of the system and verify its existence using the penalization method.
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1. Introduction and notation

The dynamic contact problems are not frequently solved in the framework of variational
inequalities. For the elastic problems there is only a very limited amount of results available (cf.
[4] and there cited literature). We have solved these problems for geometrically nonlinear plates
and shells in [2] and [3] respectively. We concentrate here on the linear Kirchhoff model of the
plate subjected not only to the perpendicular forces but also to the temperature source. We shall
use the model derived in [5] under the assumption of a small change of temperature compared
with its reference temperature. In contrast to it the hyperbolic equation for the deflections is
substituted here by the variational inequality. We formulate and solve the penalized initial-
boundary value problem. Using the a priori estimates we achieve the sequence converging to a
weak solution of the original problem.

Let Ω ⊂ R2 be a bounded convex polygonal or C2 domain with a boundary Γ and I ≡ (0, T )
a bounded time interval, Q = I × Ω, S = I × Γ. The unit outer normal vector is denoted by
n = (n1, n2), τ = (−n2, n1) is the unit tangent vector. The constants E > 0 and ν ∈ [0, 1

2) are
the Young modulus of elasticity and the Poisson ratio, respectively. We set

a =
h2

12
, b =

Eh2

12%(1− ν2)
,

where h is the the plate thickness and % is the density of the material.
With respect to a heat conduction we introduce following constants. The specific heat of

the body c > 0, the coefficients of thermal conductivity λ > 0 . Further we set α > 0 the
coefficient of thermal expanding and Υ > 0 the reference temperature of the plate. We shall
use the abbreviations

κ =
λ

ρc
> 0, d =

κ12

h2
> 0, e =

κα2ΥE

λ(1− 2ν)
> 0.

We shall employ the following notations for space and time derivatives are

∂

∂s
≡ ∂s,

∂2

∂s∂r
≡ ∂sr, ∂i = ∂xi , i = 1, 2; v̇ =

∂v

∂t
, v̈ =

∂2v

∂t2
, v : Q 7→ R.

For a domain or an appropriate manifold M and p ≥ 1 we define the Banach space Lp(M) of real
valued measurable functions with integrable power of p. The space L∞(M) is the Banach space
of essentially bounded functions. By Hk(M) ⊂ L2(M) with k ≥ 0 we denote the Sobolev (for
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a noninteger k the Sobolev-Slobodetskii) spaces of functions defined on M . For the anisotropic
spaces Hk(M), k = (k1, k2) ∈ R2

+, k1 is related with the time while k2 with the space variables
provided M is a time-space domain.

By H̊1(Ω) we denote the subspace of functions from H1(Ω) with zero traces on Γ . The dual

to H̊1(Ω) is denoted by H−1(Ω) with 〈·, ·〉 the duality pairing between H−1(Ω) and H̊1(Ω).

2. Formulation of the problem

A triple {u, g, θ} expresses an unknown deflection of the middle plane, an unknown contact
force between the plate and the rigid obstacle and an unknown change of the temperature.
Classical formulation for the plate simply supported, with the zero change of the temperature
on the boundary and acting under a perpendicular load f and the heat source p is composed
of the system

ü− a∆ü+ b(42u+ 1+ν
2 4θ) = f + g,

u ≥ 0, g ≥ 0, ug = 0,

θ̇ − κ4θ + dθ − e4u̇ = p

 on Q,(1)

the boundary conditions

(2) u = w, θ = M(u, θ) = 0, u ≥ 0, g ≥ 0, ug = 0 on S,

M(u, θ) ≡ b
(
4u+ (1− ν)(2n1n2∂12u− n2

1∂22u− n2
2∂11u) + 1+ν

2 θ
)

and the initial conditions

(3) u(0, ·) = u0, u̇(0, ·) = v0, θ(0, ·) = θ0 on Ω.

For u, y ∈ L2(I;H2(Ω)) we define the following bilinear form

(4) A : (u, y) 7→ b
(
∂11u∂11y + ∂22u∂22y + ν(∂11u∂22y + ∂22u∂11y) + 2(1− ν)∂12u∂12y

)
almost everywhere on Q and introduce for a fixed function w : Ω 7→ R a shifted cone

(5) K := {y ∈ w + L∞(I;V ); ẏ ∈ L∞(I; H̊1(Ω)), y ≥ 0 on Q},

where

(6) V = H2(Ω) ∩ H̊1(Ω).

Then the variational formulation of (1–3) has the following form:

Problem P. Look for {u, θ} ∈ K × (L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω))) such that

u̇(T, ·) ∈ H̊1(Ω), θ̇ ∈ L2(I;H−1(Ω)), the relations∫
Q

(
A(u, y − u)− u̇(ẏ − u̇)− a∇u̇ · ∇(ẏ − u̇)− b1+ν

2 ∇θ · ∇(y − u)
)
dx dt

+

∫
Ω

(u̇(y − u) +∇u̇ · ∇(y − u)) (T, ·) dx

≥
∫
Ω

(v0(y(0, ·)− u0) +∇v0 · ∇(y(0, ·)− v0)) dx+

∫
Q
f(y − u) dx dt,

(7)

∫
I
〈θ̇, z〉 dt+

∫
Q

(dθz + κ∇θ · ∇z + e∇u̇ · ∇z) dx dt =

∫
Q
pz dx dt(8)

hold for any {y, z} ∈ K × L2(I; H̊1(Ω)) and the initial conditions (3) are fulfilled (for u̇ in
certain generalized sense).
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Problem P will be solved under following assumptions

w ∈ H2(Ω), w ≥ w0 > 0 on Ω; w|Γ = u0|Γ ,

u0 ∈ H2(Ω), u0 ≥ 0 on Ω; v0 ∈ H̊1(Ω), θ0 ∈ L2(Ω), {f, p} ∈ L2(Q)2.
(9)

3. Penalized problem

For any η > 0 we formulate the penalized problem

ü− a4ü+ b(42u+ 1+ν
2 4θ) = f + η−1u−,

θ̇ − κ4θ + dθ − e4u̇ = p

}
on Q,(10)

(11) u = w, θ = M(u, θ) = 0 on S

and the initial conditions (3) hold.

It has the following variational formulation.

Problem Pη. Look for {u, θ} ∈ (w+L∞(I;V ))×L∞(I; H̊1(Ω)) such that {u̇, θ̇} ∈ L∞(I; H̊1(Ω))×
L2(I; (H−1(Ω)), ü ∈ L2(Q), the equations

(12)

∫
Q

(
ü(y − a4y) +A(u, y)− b1+ν

2 ∇θ · ∇y − η
−1u−y

)
dx dt =

∫
Q
fy dx dt,

(13)

∫
I
〈θ̇, z〉 dt+

∫
Q

(dθz + κ∇θ · ∇z + e∇u̇ · ∇z) dx dt =

∫
Q
pz dx dt

hold for any {y, z} ∈ L2(I;V )× L2(I; H̊1(Ω)) and the initial conditions (3) remain.

We shall verify the existence of a solution to the penalized problem.

Theorem 3.1. For every η > 0 there exists a solution {u, θ} of the problem Pη.

Proof. Let us denote by {vi ∈ V ; i ∈ N} a basis of V orthonormal with respect to the inner
product

(u, v)a =

∫
Ω

(uv + a∇u · ∇v) dx, u, v ∈ H̊1(Ω)

and by {wi ∈ H̊1(Ω); i ∈ N} an orthonormal in L2(Ω) basis of H̊1(Ω).
We construct the Galerkin approximation {um, θm} of a solution in a form

um(t) = w +
m∑
j=1

αj(t)vj , θm(t) =
m∑
j=1

βj(t)wj ; {αj(t), βj(t)} ∈ R2, j = 1, ...,m,

(14)

∫
Ω

(
ümvi + a∇üm · ∇vi +A(um, vi)− b1+ν

2 ∇θm · ∇vi − η
−1u−mvi

)
dx =

∫
Ω
fvi dx,

(15)

∫
Ω

(
θ̇mwi + κ∇θm · ∇wi + dθmwi + e∇u̇m · ∇wi

)
dx =

∫
Ω
pwi dx, i = 1, ...,m,

um(0) = u0m, u0m → u0 in H2(Ω); u̇m(0) = v0m, v0m → v0 in H̊1(Ω);

θm(0) = θ0m, θ0m → θ0 in L2(Ω).
(16)

The initial value problem (14)-(16) fulfils the conditions for the local existence of solution
{um, θm} on some interval Im ≡ [0, tm], 0 < tm < T.
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Let us set γ = b1+ν
2e . To derive the a priori estimates for solutions of (14)-(16) we multiply

the equations (14) by α̇i(t) and (15) by γβi(t) respectively, add with respect to i and integrate
on [0, tm]. We obtain for Qm := Im × Ω∫

Qm

[
1

2
∂t
(
u̇2
m + a|∇u̇m|2 +A(um, um) + γθ2

m + η−1(u−m)2
)

+ γ(κ|∇θm|2 + dθ2
m)

]
dx dt

=

∫
Qm

(fu̇m + γ p θm) dx dt

which leads to the estimate

‖u̇m‖2L∞(I;H̊1(Ω))
+ ‖um‖2L∞(I;V ) + ‖θm‖2L∞(I;L2(Ω)) + ‖θm‖2L2(I;H̊1(Ω))

+ η−1‖u−m‖2L∞(I;L2(Ω)) ≤ C1 ≡ C1(f, p, u0, v0, θ0).
(17)

The prolongation to the whole interval I is due to the original estimate for Im not depending
on m.

From the equation (15) we obtain straightforwardly the estimate

(18) ‖θ̇m‖L2(I;Wm
∗) ≤ C2(f, p, u0, v0, θ0), m ∈ N,

where Wm ⊂ H̊1(Ω) is the linear hull of {wi}mi=1.
From (14) we obtain

(19) ‖üm − a4üm‖2L2(I;Vm∗)
≤ C3(η), m ∈ N,

where Vm ⊂ H2(Ω) is the linear hull of {vi}mi=1.
We proceed with the convergence of the Galerkin approximation. Applying the estimate (17),

the compact imbedding theorem and interpolation in Sobolev spaces we obtain subsequences of
{um}, {θm} (denoted again by {um}, {θm}), and functions u, θ with the convergences

um ⇀∗ u in L∞(I;V ),

u̇m ⇀∗ u̇ in L∞(I; H̊1(Ω)),

um → u in C(I;H1−ε(Ω)) ∩ L∞(I;H2−ε(Ω)) for any ε > 0, ,

θm ⇀∗ θ in L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)).

(20)

The estimates (18), (19) imply the convergence

θ̇m ⇀ θ̇ in L2(I;W ∗),(21)

(üm − a4üm) ⇀ (ü− a4ü) in L2(I;Y ∗),(22)

where W =
⋃
m∈NWm, W = H̊1(Ω) and Y =

⋃
m∈N Vm, Y = V.

The convergences (21), (22) imply

‖θ̇m‖L2(I;H−1(Ω)) ≤ C2(f, p, u0, v0, θ0), m ∈ N,(23)

θ̇m ⇀ θ̇ in L2(I;H−1(Ω)),(24)

‖üm − a4üm‖2L2(I;Y ∗) ≤ C3(η), m ∈ N.(25)

Moreover we obtain from (25) a better acceleration estimate

(26) ‖üm‖L2(Q) ≤ C4(η)

and the convergence

(27) üm ⇀ ü in L2(Q)

for a chosen subsequence denoted again by {üm}. We have applied also the properties of the
elliptic operator v 7→ v − a4v, v ∈ V ; in the same way as in [1] setting

‖üm‖L2(Q) = sup
‖f‖L2(Q)≤1

∣∣∣∣∫
Q
üm f dx dt

∣∣∣∣ ≤ c sup
‖v‖L2(I;V )≤1

∣∣∣∣∫
Q
üm(v − a4v) dx dt

∣∣∣∣ ≤ C4(η).
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Let µ ∈ N, yµ =
∑µ

i=1 φi(t)vi, zµ =
∑µ

i=1 φi(t)wi, φi ∈ D(0, T ), i = 1, ..., µ. We have for
arbitrary t ∈ I the relations∫

Ω

(
üm(yµ − a4yµ) +A(um, yµ)− b1+ν

2 ∇θm · ∇yµ − η
−1u−myµ)

)
dx =

∫
Ω
fyµ dx,∫

Ω

(
θ̇mzµ + κ∇θm · ∇zµ + dθmzµ + e∇u̇m · ∇zµ

)
dx =

∫
Ω
pzµ dx, ∀ m ≥ µ, t ∈ I.

The convergences (20), (24), (27) imply that functions u, θ fulfil∫
Ω

(
ü(yµ − a4yµ) +A(u, yµ)− b1+ν

2 ∇θ · ∇yµ − η
−1u−yµ)

)
dx =

∫
Ω
fyµ dx,(28) ∫

Ω

(
θ̇zµ + κ∇θ · ∇zµ + dθzµ + e∇u̇ · ∇zµ

)
dx =

∫
Ω
pzµ dx.(29)

Functions {yµ}, {zµ} form a dense subsets of the spaces L2(I;V ) and L2(I; H̊1(Ω)) respectively.
Then we obtain from (28), (29) the relations (12), (13). The initial conditions (3) follow due to
(16) and the proof of the existence of a solution is complete.

4. Solvability of the original problem

The estimates (17), (23) imply the following η independent estimates :

‖u̇η‖2L∞(I;H̊1(Ω))
+ ‖uη‖2L∞(I;V ) + ‖θη‖2L∞(I;L2(Ω)) + ‖θη‖2L2(I;H̊1(Ω))

+ ‖θ̇η‖2L2(I;H−1(Ω))

+ η−1‖u−η ‖2L∞(I;L2(Ω)) ≤ c ≡ c(f, p, u0, u1, θ0).
(30)

for a solution {uη, θη}, η > 0 of the penalized problem.
The acceleration term üη does not appear in (30). It is then suitable to transform the

penalized relation (12) using the method by parts with respect to t and the Gauss formula with
respect to x. We obtain the system∫

Q

(
A(uη, y)− u̇ηẏ − a∇u̇η · ∇ẏ − b1+ν

2 ∇θη · ∇y
)
dx dt+

∫
Ω

(u̇ηy + a∇u̇η · ∇y) (T, ·) dx

=

∫
Ω

(v0y(0, ·) + a∇v0 · ∇y(0, ·)) dx+

∫
Q

(f + η−1u−η )y dx dt,

(31)

(32)

∫
Q

(
θ̇ηz + κ∇θη · ∇z + dθηz + e∇u̇η · ∇z

)
dx dt =

∫
Q
py dx dt

holding for any {y, z} ∈ L2(I;V )× L2(I; H̊1(Ω)) with ẏ ∈ L2(I; H̊1(Ω)).
We derive an η−independent estimate of the penalty term η−1u−η . Applying the assumptions

(9) and the definition of u−η we obtain

0 ≤ w0

∫
Q
η−1u−η dx dt ≤

∫
Q
η−1u−η w dxdt ≤

∫
Q
η−1u−η (w − uη) dx dt.

After inserting y = w − uη in (31) we achieve using the estimates (30) the crucial estimate

(33) ‖η−1u−η ‖L1(Q) ≤ C ≡ C(f, p, u0, u1, θ0).
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Hence there exists a sequence ηk ↘ 0, functions {u, θ} and a functional g such that for {uk, ηk} ≡
{uηk , θηk} the following convergences hold:

uk ⇀
∗ u in L∞(I;V ),

u̇k ⇀
∗ u̇ in L∞(I; H̊1(Ω)),

u̇k(T, ·) ⇀ u̇(T, ·) in H̊1(Ω),

uk → u in C(I;H1−ε(Ω)) ∩ L∞(I;H2−ε(Ω)) for any ε > 0,

η−1u−k ⇀
∗ g in (L∞(Q))∗,

θk ⇀
∗ θ in L∞(I;L2(Ω)) ∩ L2(I; H̊1(Ω)),

θ̇k ⇀ θ̇ in L2(I;H−1(Ω))

(34)

The convergences above prove the relation (8). Together with (31) they imply∫
Q

(
A(u, y)− u̇ẏ − a∇u̇ · ∇ẏ − b1+ν

2 ∇θ · ∇y
)
dx dt+

∫
Ω

(u̇y + a∇u̇ · ∇y) (T, ·) dx

=

∫
Ω

(v0y(0, ·) + a∇v0 · ∇y(0, ·)) dx+

∫
Q
fy dx dt+ 〈〈g, y〉〉

for any y ∈ L2(I;V ) with ẏ ∈ L2(I; H̊1(Ω)), where 〈〈·, ·〉〉 is the duality pairing between
(L∞(Q))∗ and L∞(Q).

We have the orthogonality
〈〈g, u〉〉 = 0

due to the relations 〈〈g, u〉〉 = limk→∞ η
−1
k ‖u

−
k ‖

2
L2(Q) = 0.

The relations 〈〈g, y〉〉 = limk→∞
∫
Q η
−1
k u−k y dx dt ≥ 0 for any y ∈ K imply together with the

orthogonality proved above that the variational inequality (7) is fulfilled and we have verified
the existence theorem:

Theorem 4.1. Let the assumptions (9) hold. Then there exists a solution of Problem P.
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