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Abstract. In a uniformly convex Banach space with a continuous generalized semi-inner prod-
uct X we investigate the relation of orthogonality in X and projections acting on X. We prove
that the decomposition theorem holds on a uniformly convex Banach space with a continuous
generalized semi-inner product . This result is presented in detail in Theorem 4. The main
results in this paper is Theorem 8. We prove the uniqueness of orthogonal linear projections.
For more results we refer to [1], [2], [3], [4] and references therein.
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1. Generalized Semi-inner Products

Let X be a vector space over C. We call a function [·, ·]ϕ : X×X → C a generalized semi-inner
product (g.s.i.p.) on a vector space X if it satisfies the following conditions:
(i) Linearity with respect to the first variable:

[αx+ βy, z]ϕ = α[x, z]ϕ + β[y, z]ϕ for all α, β ∈ C and x, y, z ∈ X;

(ii) Positivity: [x, x]ϕ > 0 for all x ∈ X \ {0};
(iii) A generalization of the Cauchy-Schwarz inequality: there holds for some ϕ, ψ : R+ → R+

that
|[x, y]ϕ| ≤ ϕ([x, x]ϕ)ψ([y, y]ϕ), x, y ∈ X

and the equality holds when x = y.
We require that

ϕ(0) = 0, ϕ(t) > 0 for t > 0

and

ψ(0) = 0, ψ(t) =
t

ϕ(t)
for t > 0.

The importance of a generalized semi-inner product space (s.i.p.s.) is that every normed vector
space can be represented as a semi-inner product space so that the theory of operators on a
Banach space can be penetrated by Hilbert space type arguments.

Theorem 1. [5] Let [·, ·]ϕ be a g.s.i.p. on a vector space X over C. Then ‖x‖ϕ = ϕ([x, x]ϕ)
defines a norm on X.

Moreover let X be a vector space equipped with the norm ‖ · ‖. If ϕ is surjective onto R+,
then there exists a g.s.i.p. on X such that ‖ · ‖ϕ = ‖ · ‖.

In a normed vector spaceX we set S = {x ∈ X : ‖x‖ = 1} .We introduce additional properties
of a g.s.i.p.

A very convenient property of a g.s.i.p. is continuity with respect to the second variable.
A g.s.i.p. space X is called a continuous g.s.i.p. space when a generalized semi-inner product

satisfies the following additional condition:
For every x, y ∈ S,

(1) Re[y, x+ λy]ϕ → Re[y, x]ϕ for all real λ→ 0.

Define a relation on a s.i.p. space which may be called an orthogonality relation. Let x, y ∈ X.
We say that x is orthogonal to y and y is transversal to x if [y, x]ϕ = 0.

2010 Mathematics Subject Classification. 41A65, 46B20, 46B25.
Partially supported by the Polish Ministry of Sciences and Higher Education.



36 D. MIELCZAREK, E. SZLACHTOWSKA

On a normed space we also can study the orthogonality relation (in the sense of Birkhoff)
defined as follows:

A vector x is orthogonal to y in the sense of Birkhoff if

‖x+ λy‖ ≥ ‖x‖ for all λ ∈ C.
One more piece of notation: throughout the paper we write ‖x‖ = ϕ([x, x]ϕ) and ‖x‖∗ = ψ([x, x]ϕ).
It is worth noting that orthogonality in the sense of Birkhoff is very close to the concept of an

element of best approximation. In a continuous g.s.i.p. space orthogonality relation is equivalent
to Birkhoff orthogonality relation.

Lemma 2. In a continuous g.s.i.p.s. x is orthogonal to y if and only if x is orthogonal to y in
the sense of Birkhoff.

Proof. Let x be normal to y. Thus,

‖x+ λy‖‖x‖∗ ≥ |[x+ λy, x]ϕ| =
|[x, x]ϕ + λ[y, x]ϕ| = ‖x‖‖x‖∗.

Therefore, ||x+ λy|| ≥ ||x|| for all complex λ.
Let [·, ·]ϕ be a continuous g.s.i.p. If ‖x+ λy‖ ≥ ‖x‖ for all λ ∈ C, then

0 ≤ ‖x+ λy‖∗‖x+ λy‖ − ‖x+ λy‖∗‖x‖ ≤
[x+ λy, x+ λy]ϕ − |[x, x+ λy]ϕ| ≤

Re[x, x+ λy]ϕ + Re {λ[y, x+ λy]ϕ} − Re[x, x+ λy]ϕ.

Therefore, Re {λ[y, x+ λy]ϕ} ≥ 0.
For real λ we have

Re[y, x+ λy]ϕ ≥ 0 for λ ≥ 0;

Re[y, x+ λy]ϕ ≤ 0 for λ ≤ 0.

From the continuity condition, for real λ, we have

lim
λ→0

Re[y, x+ λy]ϕ = Re[y, x]ϕ

through positive values for λ→ 0+ and through negative values for λ→ 0−. Thus Re[y, x]ϕ = 0.
For imaginary λ, say λ = iλ1 with λ1 real, we obtain Re[iy, x]ϕ = 0, i.e. Im[y, x]ϕ = 0. Therefore,
[y, x]ϕ = 0. �

For the purpose of studing projections, we characterize strict convexity of X in terms of the
g.s.i.p.

Theorem 3. [5] The normed vector space X is striclty convex if and only if whenever

[x, y]ϕ = ϕ([x, x]ϕ)
[y, y]ϕ

ϕ([y, y]ϕ)
, x, y 6= 0

then y = αx for some α > 0.

To extend Hilbert space type argument we prove the decomposition theorem. The desired
statement follows after one impose an additional structure on a g.s.i.p. chiefly to guarantee the
existence of orthogonal vectors to closed subspaces.

Theorem 4. Let X be a uniformly convex Banach space with a continuous generalized semi-
inner product. Let M be a closed subspace of X. Then each x ∈ X can be uniquely decomposed
in the form x = y + z with y ∈M and z ∈M⊥ = {u ∈ X : ∀ v ∈M [v, u]ϕ = 0 }.

Proof. It is well known that, in a uniformly convex Banach space, for a closed vector subspace
M and a vector x 6∈M , there exists a unique nonzero vector y ∈M such that

||x− y|| = d(x,M) = inf{||x− y′|| : y′ ∈M}.
Let us set z = x− y. Then z is orthogonal to M .
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In order to prove the uniqueness of the representation x = y+z we assume that x = y1 +z1 =
y2 + z2 where y1, y2 ∈ M and z1, z2 ∈ M⊥. It follows that z1 − z2 = y1 − y2 ∈ M . If
z1 − z2 ∈M ∩M⊥, then z1 − z2 = 0 and y1 = y2. If z1 − z2 6∈M⊥, then

0 = [z1 − z2, z1]ϕ = [z1, z1]ϕ − [z2, z1]ϕ ≥ ‖z1‖‖z1‖∗ − ‖z2‖ ‖z1‖∗,
0 = [z2 − z1, z2]ϕ = [z2, z2]ϕ − [z1, z2]ϕ ≥ ‖z2‖‖z2‖∗ − ‖z1‖ ‖z2‖∗.

Therefore,
‖z1‖ = ‖z2‖ and ‖z1‖ ‖z2‖∗ = [z1, z2]ϕ.

By the strict convexity of X, we obtain z1 = z2. This implies that y1 = y2. �

2. Orthogonal Projections

Let X be a uniformly convex Banach space with a continuous generalized semi-inner product
and let M be a closed subspace of X. Let P : X →M be a linear projection. We say that P is
orthogonal if (kerP )⊥ = M .

Then the following theorem holds.

Theorem 5. Let M be a closed subspace of a uniformly convex Banach space X with a contin-
uous generalized semi-inner product. Let P : X → M be a linear projection. If ‖P‖ = 1, then
P is orthogonal.

Proof. We shall show that (kerP )⊥ = M . For x ∈ X we have

(2) ‖P (x)‖ ≤ ‖x‖.
Setting x equal to Px+ λ(y − Py) in (2) we obtain

‖P (Px+ λ(y − Py))‖ ≤ ‖Px+ λ(y − Py)‖,
hence

‖Px‖ ≤ ‖Px+ λ(y − Py)‖.
By virtue of Theorem 2, it is equivalent to the fact that Px is orthogonal to every z ∈ kerP .

Conversely, suppose that x ∈ (kerP )⊥. Then [z, x]ϕ = 0 for z ∈ kerP . Hence [x−Px, x]ϕ = 0
and

‖x‖‖x‖∗ = [x− Px+ Px, x]ϕ = [x− Px, x]ϕ + [Px, x]ϕ ≤ ‖Px‖‖x‖∗ ≤ ‖x‖‖x‖∗.
By assumptions it follows that ‖x‖ = ‖Px‖ and ‖Px‖‖x‖∗ = [Px, x]. By the strict convexity of
X, we obtain Px = x, and so x ∈M . �

Now we can conclude that in a uniformly convex Banach space with a continuous g.s.i.p.
every orthogonal linear projection is a projection of norm one.

Theorem 6. Assume that X is a uniformly convex Banach space with a continuous generalized
semi-inner product and M is a closed subspace of X. Let P : X →M be a linear projection. If
P is orthogonal, then the norm of P is equal to one.

Proof. Let x ∈ X. Then Px− x ∈ kerP and

‖Px‖‖Px‖∗ = [Px, Px]ϕ = [Px− x+ x, Px]ϕ =

= [Px− x, Px]ϕ + [x, Px]ϕ = [x, Px]ϕ.

Using the generalization of the Cauchy-Schwarz inequality we get

‖Px‖ ≤ ‖x‖,
hence ‖P‖ = 1. �

Lewicki and Skrzypek proved that minimal projections onto symmetric subspaces of smooth
Banach spaces are unique (see [2]). Now, we show an analogous theorem in a uniformly convex
Banach space X with a continuous g.s.i.p. In its proof we use the structure of a generalized
semi-inner product.
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Lemma 7. Let P : X → M be an ortogonal projection. Then P is a unique orthogonal projec-
tion.

Proof. Let Pi be an orthogonal projection (i = 1, 2). Hence (kerPi)
⊥ = M (i = 1, 2). Then

P1x− P2x ∈M and

‖P1x− P2x‖‖P1x− P2x‖∗ = [P1x− P2x, P1x− P2x]ϕ =

= [P1x− x+ x− P2x, P1x− P2x]ϕ =

= [P1x− x, P1x− P2x]ϕ + [x− P2x, P1x− P2x]ϕ = 0.

Consequently, we conclude that P1x = P2x, which completes the proof. �

We can write the following statement as the result of our previous considerations.

Theorem 8. Let X be a uniformly convex Banach space with continuous semi-inner product.
Let M be a closed subspace of X. If P : X →M is a linear projection such that ‖P‖ = 1, then
P is unique.
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