ON A PERIODIC BOUNDARY VALUE PROBLEM AT RESONANCE

BORIS RUDOLF

The article deals with periodic boundary value problem for a second order differential equation with bounded nonlinearity. The associated linear problem is selfadjoint and the kernel of linear operator defined by this problem is two dimensional. The existence of a solution is based on a condition of Landesman - Lazer type [3]. The ideas of Ljapunov - Schmidt decomposition and Leray - Schauder degree are used [1], [7]. The case of one dimensional kernel for various boundary conditions was solved by Grossinho [2], Przeradzki [4] and in the earlier papers of the author [5, 6].

We consider the periodic boundary value problem

$$x'' + x + f(t, x) = h(t),$$

$$x(0) = x(2\pi), \qquad x'(0) = x'(2\pi),$$
(1)

where $I = [0, 2\pi]$, $f : I \times R \to R$ is a globally bounded continuous function and $h : I \to R$ is a continuous function.

Solution x(t) is a classical one, $x \in C^2(I)$.

The linear boundary value problem

$$x'' + x = h(t),$$

$$x(0) = x(2\pi), \qquad x'(0) = x'(2\pi),$$
(2)

is selfadjoint. By (2) is defined the linear operator $L: X \to Z$

$$Lx = x'' + x$$

where $X = \{x \in C^2(I); x(0) = x(2\pi), x'(0) = x'(2\pi)\}$ and Z = C(I).

The kernel and image of L are two dimensional, $N(L) = [\sin t, \cos t]$ and $\operatorname{Im} L = \{z \in Z; (z, \sin t) = (z, \cos t) = 0\}$, where (., .) is a scalar product in the space $L_2(I)$.

Let $N: X \to Z$ be the nonlinear operator defined by N(x) = f(t, x(t)).

The problem (1) rewritten in operator form is

$$Lx + N(x) = h. (3)$$

Spaces X and Z are decomposed to direct sums $X = N(L) \oplus X_2$, $Z = Z_2 \oplus \text{Im } L$. dim $N(L) = \dim Z_2 = 2$. N(L) and Z_2 are isomorphic with natural continuous isomorphism $J : Z_2 \to N(L)$. The operator equation (3) is equivalent to the fixed point problem

$$x = T(x) \tag{4}$$

where $T: X \to X$ is defined as

$$T(x) = Px - JQ(N(x) - h) - L_n^{-1}(I - Q)(N(x) - h).$$
(5)

Here P, Q are projections $P: X \to N(L), Q: Z \to Z_2$ and $L_p^{-1}: \text{Im } L \to X_2$ is the inverse operator to $L|_{X_2}$ continuous as the operator $\text{Im } L \to X_2$ and compact as $Z \to Z$.

We prove the following existence theorem

Theorem. Suppose the existence of uniform limits

$$f_{+}(t) = \lim_{x \to \infty} f(t, x), \qquad f_{-}(t) = \lim_{x \to -\infty} f(t, x)$$

If for each $t \in I$

$$f_+(t) > h(t) > f_-(t),$$

²⁰¹⁰ Mathematics Subject Classification. 34C25.

Supported by grant 1/0426/12 of the Scientific Grant Agency VEGA of Slovak Republic.

then the periodic boundary value problem (1) is solvable.

Proof. The equation (4) is embedded to the homotopic system of equations

$$H(\lambda, x) = 0, \tag{6}$$

where $H: [0,1] \times Z \to Z$ is defined as $H(\lambda, x) = I - \lambda T(x)$.

The pair (λ, x) is a solution of (6) iff $x = x_1 + x_2 \in N(L) \oplus X_2$ and

$$x_{2} + \lambda L_{p}^{-1} (I - Q) (N(x) - h) = 0,$$

(1 - \lambda) x_{1} + \lambda J Q (N(x) - h) = 0. (7)

A solution of (7) is for $\lambda = 1$ also solution of (4). The global boundedness of f implies boundedness of x_2 part of possible solution of (7). So exists a constant $R_2 > 0$ such that $||x_2|| < R_2$ for each solution x of (7). The bound R_2 is independent on λ .

We prove a priori boundedness of solution of (6) by contradiction. Suppose that (λ_n, x_n) is a sequence of solutions of (6) such that $||x_n|| \to \infty$. As $||x_{n2}|| < R_2$, $||x_{n1}|| \to \infty$. Going to the subsequence we obtain that $x_{n1} = A_n \sin(t - \varphi_n)$ with $A_n \to \infty$ and $\varphi_n \to \varphi$. Then

$$x_{n1} = -\frac{\lambda}{1-\lambda}JQ(N(x) - h)$$

and
$$\int_{0}^{2\pi} x_{1n} \sin(t - \varphi_n) dt = -\frac{\lambda}{1 - \lambda} \int_{0}^{2\pi} Q(N(x) - h) \sin(t - \varphi_n) dt =$$
$$= -\frac{\lambda}{1 - \lambda} \int_{0}^{2\pi} (f(t, A_n \sin(t - \varphi_n) + x_{n2}(t)) - h(t)) \sin(t - \varphi_n) dt. \quad (8)$$

Assuming $0 < \lambda < 1$, we obtain for $n \to \infty$

$$0 > \frac{\lambda - 1}{\lambda} A_n \pi = \int_{I_{\varphi}^+} (f_+(t) - h(t)) \sin(t - \varphi) \, dt + \int_{I_{\varphi}^-} (f_-(t) - h(t)) \sin(t - \varphi) \, dt \,, \qquad (9)$$

where $I_{\varphi}^{+} = \{t \in I; \sin(t - \varphi) > 0\}$ and $I_{\varphi}^{-} = \{t \in I; \sin(t - \varphi) < 0\}$. The last inequality (8) is in a contradiction with assumptions of theorem. That means solutions of (6) are bounded for $0 < \lambda < 1$. Denote the a priori bound by R. For $\lambda = 0$ is the left hand side of (6) identity with only zero solution.

Set $\Omega = \{x \in Z; ||x|| < R\}$. Now either (6) possesses a solution for $\lambda = 1$ on the set $\partial \Omega$ or the Leray - Schauder degree of H is well defined on Ω for each $0 \le \lambda \le 1$ and

$$d(I - \lambda T, \Omega, 0) = d(I, \Omega, 0) = 1.$$

Then (4) possesses a solution x(t) which is a classical solution of the periodic boundary value problem (1).

References

- Gaines, R., Mawhin, J., Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer Verlag, Berlin/New York, 1977.
- [2] Grossinho, M.R. Some existence result for nonselfadjoint problems at resonance, Contemporary Mathematics 72 (1988), 107–119.
- [3] Landesman, E.M. and Lazer, A.C., Nonlinear perturbations of a linear elliptic boundary value problem, J. Math. Mech. 19 (1970), 609–623.
- [4] Przeradzki, B., Three methods for the study of semilinear equations at resonance, Colloquium Mathematicum 66 (1993), 109–129.
- [5] Rudolf, B., On the generalized boundary value problem, Archivum Mathematicum **36** (2000), 125–137.
- [6] Rudolf, B., On a generalized boundary value problem for differential systems, Tatra Mt. Math. Publ. 38 (2007), 215–228.
- [7] Zeidler, E., Applied Functional Analysis, Springer-Verlag, New York, Berlin, Heidelberg 1995.

Department of Mathematics, Faculty of Electrical Engineering STU, 812 19 Bratislava, Slovakia

E-mail address: boris.rudolf@stuba.sk