REACHABILITY FOR ZYGODACTY BIRD'S FOOT

ANNA CHIARA LAI AND PAOLA LORETI

In this talk we discuss a paper in preparation [LL2]. In this paper we establish a model for the foot of a bird with fours toes, typically observed in parrots. We are able to describe the reachability by using the theory of expansions in non-integer bases and the grasping problem.

1. Basic in expansions in non-integer bases

W recall basic facts in in expansions in non-integer bases

• positional number system: (λ, A) , s.t. $|\lambda| > 1$, $A \subset \mathbb{C}$; representable number x: there exists an expansion (c_i) with $c_i \in A$ for x, i.e.,

$$x = \sum_{j=1}^{\infty} \frac{c_j}{\lambda^j}$$

- $\lambda = 2$, $A = \{0, 1\}$: binary expansion;
- $\lambda = 3$, $A = \{0, 2\}$: the set of representable numbers is Middle Third Cantor set.

We adapt the expansion in non-integer bases to foot rotation. We assume the foot rotation

- discrete in time: to each "clock" is associated one action;
- finite in controls: a finite numbers of controls for each phalanx.

The main idea is the following

base \leftrightarrow physical properties of the digit

 $\begin{array}{ccc} \text{alphabet} & \leftrightarrow & \text{control set} \\ \text{representability} & \leftrightarrow & \text{reachability} \end{array}$

To describe the reachability set we will use the theory of iterated function system (IFS)

2. IFS

An iterated function system (IFS) is a set of contractive functions $f_j: \mathbb{C} \to \mathbb{C}$. We recall that a function in a metric space (X, d) is a contraction, if for every $x, y \in X$

$$d(f(x), f(y)) < c \cdot d(x, y)$$

for some c < 1. Hutchinson showed that every finite IFS, namely every IFS with finitely many contractions, admits a unique non-empty compact fixed point R w.r.t the Hutchinson operator

$$\mathcal{F}: \mathcal{S} \mapsto \bigcup_{j=1}^{J} f_j(\mathcal{S})$$

Moreover for every non-empty compact set $S \subseteq \mathbb{C}$

$$\lim_{k\to\infty} \mathcal{F}^k(\mathcal{S}) = \mathcal{R}.$$

The attractor \mathcal{R} is a self-similar set and it is the only bounded set satisfying $\mathcal{F}(\mathcal{R}) = \mathcal{R}$.

²⁰¹⁰ Mathematics Subject Classification. 15A47.

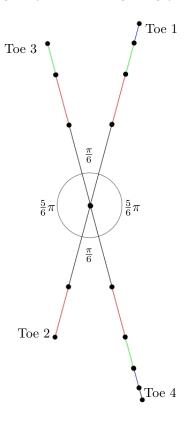


FIGURE 1. A zygodacty bird's foot. The scaling ratio ρ is the Golden Mean, the angles between toes are given by setting $\omega_0 = \pi/6$.

3. A MULTI-PHALANX SELF-SIMILAR FOOT

We focus on the model based on the following

Main features of the toes

- different number of phalanxes in the toes;
- constant ratio between phalanxes;
- Toe 1 and Toe 4 have respectively four and five phalanxes;
- Toe 2 and Toe 3 have respectively three and two phalanxes;
- phalanxes can rotate or simply do nothing;

Main features of the foot

- the angle between Toe 1 and Toe 2 is π ;
- the angle between Toe 3 and Toe 4 is π ;
- the angle between Toe 1 and Toe 3 is $\omega_0 \in (0, \pi/2)$.

A mathematical description will be given and the reachability and the grasping phenomenon analyzed. The results are based on a previous paper [LL1].

4. References

[LL1] Anna Chiara Lai, Paola Loreti: Robot's finger and expansions in non-integer bases. NHM 7(1): 71-111 (2012).

[LL2] Anna Chiara Lai and Paola Loreti, in preparation.

DIPARTIMENTO DI MATEMATICA, UNIVERSITA' DI PADOVA, VIA TRIESTE, 63, 35121 PADOVA

DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA, SAPIENZA, UNIVERSITA' DI ROMA, VIA A. SCARPA N.16, 00161 ROMA

 $\textit{E-mail address} : {\tt paola.loreti@sbai.uniroma1.it}$