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H complex Hilbert space, dim H = ℵ0

L(H) bounded, linear operators on H
M ⊂ H subspace: closed linear manifold

non-trivial if {0} 6= M 6= H
invariant for T ∈ L(H) if TM ⊂ M

T ∈ L(H) is given

Lat T invariant subspace lattice of T

{T}′ = {C ∈ L(H) : CT = TC} commutant of T

Hlat T = ∩{Lat C : C ∈ {T}′}
hyperinvariant subspace lattice of T

(ISP) Does every T ∈ L(H) have a non-trivial invariant sub-

space?

(HSP) Does every T ∈ L(H) \ CI have a non-trivial hyperin-

variant subspace?
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H2 Hardy space of analytic functions on D

S ∈ L(H2), Sh = χh, where χ(z) = z ∀z ∈ D
unilateral shift; cyclic: ∨∞

n=0S
n1 = H2

Lat S = Hlat S =
{
ϑH2 : ϑ ∈ H∞ is inner

}
(Beurling)

ϑ is inner: |ϑ(ζ)| = 1 for a.e. ζ ∈ T.

Assume T ∈ L(H) is a contraction: ‖T‖ ≤ 1.

(X, V ) is a unitary asymptote of T :

(i) V ∈ L(K) is unitary,

(ii) X ∈ L(H,K), ‖X‖ ≤ 1, XT = V X,

(iii) ∀(X ′, V ′), ∃!Y ∈ L(K,K′), ‖Y ‖ ≤ 1,

Y V = V ′Y, X ′ = Y X.

Assume T ∈ C10:

(i) limn→∞ ‖Tnx‖ > 0 ∀ 0 6= x ∈ H,

(ii) limn→∞ ‖T ∗nx‖ = 0 ∀x ∈ H.

=⇒ X is injective, and

the unitary V is absolutely continuous (a.c.)

(Λ(ω) = 0 =⇒ E(ω) = 0 ∀ ω ⊂ T)
Λ linear measure on C, coinciding with the Lebesgue measure

on T and R
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Assume V is cyclic: ∃ y ∈ K, ∨∞

n=0V
ny = K

( ⇐⇒ ∃ u ∈ K, ∨∞

n=−∞
V nu = K)

V = Mα can be assumed

Here α ⊂ T Lebesgue measurable, L2(α) = χαL2(T),

Mα ∈ L(L2(α)), Mαf = χf .

ω(T ) := α is the residual set of T

M◦ Lebesgue measurable subsets of T

β ∈ M◦ is quasianalytic for T :

∀ 0 6= h ∈ H, (Xh)(ζ) 6= 0 for a.e. ζ ∈ β.

b := sup {Λ(β) : β quasianalytic for T}
∃ {βn}∞n=1, Λ(βn) → b

π(T ) := ∪nβn is the largest quasianalytic set for T

quasianalytic spectral set of T

π(T ) ⊂ ω(T )

π(T ) 6= ω(T ) (Λ(ω(T ) \ π(T )) > 0) =⇒ Hlat T is non-trivial

T is quasianalytic if π(T ) = ω(T ).
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L0(H) consists of the operators T ∈ L(H) satisfying:

(i) T is a C10-contraction,

(ii) V is cyclic,

(iii) T is quasianalytic.

L1(H) consists of the operators T ∈ L0(H) satisfying also:

(iv) π(T ) = T.

L̃(H) consists of the operators T ∈ L(H) satisfying:

(i) T is a contraction,

(ii) ∃ x ∈ H, limn→∞ ‖Tnx‖ > 0,

(iii) V is cyclic.

L1(H) ⊂ L0(H) ⊂ L̃(H)
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Positive answer for (HSP) in L̃(H) =⇒
pos. answer for (ISP) for every contraction T ∈ L(H),

where T or T ∗ is non-stable

(∃ v ∈ H, limn ‖Tnv‖ > 0 or limn ‖T ∗nv‖ > 0)

(HSP) in L̃(H) is equivalent to (HSP) in L0(H). (LK 2001)

(ISP) is open in L0(H)

(ISP) has positive answer in L1(H):

∀ T ∈ L1(H), ∀ ε > 0, ∨LatεT = H, where

M ∈ LatεT if ∃ Q ∈ L(M, H2), ‖Q‖‖Q−1‖ < 1 + ε

and Q(T |M) = SQ. (LK 2007)

(Note S ∈ L1(H
2))

T ∈ L0(H), π(T ) contains an arc

=⇒ ∃ T1 ∈ L1(H), {T1}′ = {T}′, Hlat T1 = Hlat T

(LK 2010)

5



Theorem 1. ∀ T ∈ L0(H), ∃ T1 ∈ L1(H), TT1 = T1T.

{T}′ and {T1}′ are abelian =⇒
{T1}′ = {T}′, Hlat T1 = Hlat T .

Corollary 2.

(HSP) in L0(H) is equivalent to (HSP) in L1(H).

We want to find T1 as T1 = f(T ).

ΦT : H∞ → L(H), f 7→ f(T ) Sz.-Nagy–Foias functional

calculus for an a.c. contraction T ∈ L(H):

contractive, weak-∗ continuous, algebra-homomorphism,

ΦT (1) = I and ΦT (χ) = T .

ΦT (H∞) ⊂ {T}′
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Λ◦ = Λ|M◦ Lebesgue measure on T

f ∈ H∞ partially inner function:

(i) |f(0)| < 1 = ‖f‖∞,

(ii) Λ(Ω(f)) > 0, where

Ω(f) = {ζ ∈ T : |f(ζ) = limr→1−0 f(rζ)| = 1}.
Ω ⊂ Ω(f) measurable

λ:M◦ → [0, 2π], λ(ω) = Λ◦(f
−1(ω) ∩ Ω) a.c. w.r.t. Λ◦

pe-ran(f |Ω) := {ζ ∈ T : (dλ/dΛ◦)(ζ) > 0}

Spectral Mapping Theorem (LK 2010). If T ∈ L(H) is a

quasianalytic a.c. contraction, and f ∈ H∞ is a partially inner

function, then f(T ) is also a quasianalytic contraction, and

π(f(T )) = pe-ran(f |π(T, f)), where π(T, f) = π(T ) ∩ Ω(f).

f is a regular partially inner function, if

f |Ω(f) is weakly a.c.:

ω ⊂ Ω(f), Λ(ω) = 0 =⇒ Λ(f(ω)) = 0.

=⇒ pe-ran(f |Ω) = f(Ω) ∀ Ω ⊂ Ω(f).
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For T ∈ L0(H) we want to guarantee f(T ) ∈ L0(H).

Cyclicity should be preserved =⇒ univalent functions

A disk algebra: f :D→ C analytic, and

f can be continuously extended to D−

A1 = {f ∈ A : f |D is univalent}

Proposition 3. f ∈ A1 partially inner.

(a) M =
{
w ∈ T : |f−1(w)|c > 1

}
is countable

=⇒ f |Ω(f) is almost injective.

(b) ∀ Ω ⊂ Ω(f), pe-ran(f |Ω) = f(Ω)

⇐⇒ f |Ω is weakly a.c..
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Theorem 4. Set T ∈ L0(H), and

f ∈ A1 regular partially inner, with Λ(π(T, f)) > 0.

Then T0 = f(T ) ∈ L0(H) and π(T0) = f(π(T, f)).

T ∈ L0(H) =⇒ Λ(π(T )) > 0 =⇒
∃ K ⊂ π(T ) compact, Λ(K) > 0

Question. Can we find a regular partially inner function

f ∈ A1 such that Ω(f) = K and f(K) = T?

We are looking for an appropriate f in the class of starlike

functions.
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Given

(1) ν positive Borel measure on [0, 2π],

ν([0, 2π]) = 2π and ν({t}) = 0 ∀ t ∈ [0, 2π],

(2) κ ∈ C \ {0}.
Consider

f(z) = κz exp
[
− 1

π

∫ 2π

0
log(1 − e−itz) dν(t)

]
(z ∈ D).

(∀ z ∈ C \ R−, log z := ln |z| + i arg z, where arg z ∈ (−π, π))

f is analytic on D, f(0) = 0, f ′(0) = κ

∀ z = reis ∈ D :

2π Re(zf ′(z)/f(z)) =
∫ 2π

0
Pr(s − t) dν(t) > 0

=⇒ f is starlike: f(0) = 0, f univalent, and

f(D) is starlike (w ∈ f(D) =⇒ [0, w] ⊂ f(D))
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β(t) := ν([0, t]) (t ∈ [0, 2π]) distribution function of ν

continuous, increasing, β(0) = 0, β(2π) = 2π.

κ := κ0 exp
[

i
2π

∫ 2π

0
β(t) dt − iπ

]
, where κ0 ∈ (0,∞)

Then for every s ∈ [0, 2π] we have:

lim
r→1−0

f(reis)

|f(reis)| = exp[iβ(s)].

ϕ: [0, 2π] → T, ϕ(t) = eit

µ(ω) = ν(ϕ−1(ω))/(2π) probability Borel measure on T,

(no atoms)

For every z ∈ D we have:

|f(z)| = κ0|z| exp[−2pµ(z)],

where

pµ(z) =
∫
T

log |z − w| dµ(w) is the potential of µ.

(pµ is subharmonic on C, harmonic on C \ supp µ)
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Given K ⊂ T compact, 0 < Λ(K) < 2π.

P(K) probability Borel measures, with support in K

∀ η ∈ P(K), I(η) =
∫

K
pη(z) dη(z) energy of η

M(K) = sup {I(η) : η ∈ P(K)} ∈ R
∃! µ ∈ P(K), I(µ) = M(K) : equilibrium measure of K

(no atoms)

cap(K) = exp[I(µ)] > 0 capacity of K

Frostman’s Theorem:

(i) pµ(z) ≥ I(µ) ∀ z ∈ C,

(ii) pµ(z) = I(µ) ∀ z ∈ K \ F , where

F ⊂ K is Fσ with cap(F ) = 0,

(iii) pµ(z) > I(µ) ∀ z ∈ C \ K.

Continuity Principle: ∀ζ0 ∈ K,

pµ|K is continuous at ζ0 ⇐⇒ pµ is continuous at ζ0.
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Wiener’s Criterion: ∀ζ0 ∈ K, TFAE

(i) pµ(ζ0) = I(µ),

(ii)
∑

∞

n=1
n

log(2/cap(Kn)) = ∞, where

Kn =
{
ζ ∈ K : γn < |ζ − ζ0| ≤ γn−1

}
(γ ∈ (0, 1)).

Assume C∞ \K is a regular domain: the previous conditions

hold for every ζ0 ∈ K.

=⇒ pµ is continuous on C

Define

ν(ω) = 2πµ(ϕ(ω)) (ω ⊂ [0, 2π]), and

β(t) = ν([0, 2π]) (t ∈ [0, 2π]).

Choose

κ = (cap(K))2 exp
[

i
2π

∫ 2π

0
β(t) dt − iπ

]
.

Consider

f(z) = κz exp
[
− 1

π

∫ 2π

0
log(1 − e−itz) dν(t)

]
(z ∈ D).
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Then f ∈ A1 and |f(z)| = 1 ∀ z ∈ K.

Suppose the open arc ζ̂1ζ2 is a component of T \ K.(
ζ̂1ζ2 = {eit : t1 < t < t2 < t1 + 2π}, ζ1 = eit1 , ζ2 = eit2

)

µ(ζ̂1ζ2) = 0 =⇒
β(s) = 2πµ(1̂eis) = β(t1) = β(t2) ∀ s ∈ (t1, t2) =⇒
f(ζ̂1ζ2) = {ρw : r ≤ ρ < 1}, where

w = f(ζ1) = f(ζ2), r ∈ (0, 1) =⇒
Ω(f) = K and f(K) = T.

We know that

f(eis) = exp[iβ(s)], whenever eis ∈ K (s ∈ [1, 2π]).

Hence

f |K is weakly a.c. ⇐⇒ β is a.c. ⇐⇒ µ is a.c..
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Proposition 5. K ⊂ T compact, Λ(K) > 0.

TFAE

(a) For the equilibrium measure µ of K we have

(i) pµ(z) = I(µ) ∀ z ∈ K,

(ii) µ is a.c..

(b) There exists a regular, partially inner, starlike function

f ∈ A1 such that

(i) Ω(f) = K,

(ii) f(K) = T.
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C+ is the system of compact sets K on C such that

(i) 0 < Λ(K) < ∞,

(ii) C∞ \ K is a regular domain,

(iii) the equilibrium measure µ of K is a.c. (w.r.t. Λ).

Theorem 6. ∀ K ⊂ T compact, Λ(K) > 0, ∀0 < ε < Λ(K),

∃ K1 ∈ C+, K1 ⊂ K and Λ(K \ K1) < ε.

The proof of Theorem 6 is reduced to:

Theorem 7. ∀ K ⊂ R compact, Λ(K) > 0, ∀ 0 < ε < Λ(K),

∃ K1 ∈ C+, K1 ⊂ K and Λ(K \ K1) < ε.
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Main ideas in the proof of Theorem 7:

For N ∈ N and j ∈ Z:

IN,j =
[
j2−N , (j + 1)2−N

]
.

For N ∈ N and ε > 0:

E(N, ε) = ∪{IN,j : j ∈ Z, Λ(K ∩ IN,j) ≥ (1 − ε)Λ(IN,j)}.

Lebesgue’s Density Theorem =⇒
∀ ε > 0, limN→∞ Λ(K ∩ E(N, ε)) = Λ(K).

Given ε ∈ (0, 1/4), εn = ε/2n (n ∈ N).

Define Nn (n ∈ N) by:

Λ(K \ E(N1, ε1)) < ε1; Nn+1 > Nn,

Λ ((K ∩ E(Nn, εn)) \ E(Nn+1, εn+1)) < εn+1/2Nn .
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Consider

En := ∩n
k=1E(Nk, εk) = ∪rn

s=1[an,s, bn,s],

where an,1 < bn,1 < an,2 < bn,2 < . . . < an,rn
< bn,rn

.

The equilibrium measure µn of En is a.c. (w.r.t. Λ),

and for the density function gn = dµn/dΛ we have:

gn(t) =
1

π

∏rn−1
s=1 |t − τn,s|∏rn

s=1

√
|t − an,s||t − bn,s|

(t ∈ En),

where τn,s ∈ (bn,s, an,s+1) is the unique solution of

∫ an,s+1

bn,s

∏rn−1
s=1 (t − τn,s)∏rn

s=1

√
|t − an,s||t − bn,s|

dt = 0 (s = 1, . . . , rn − 1).

Upper and lower estimates are given for gn(t).
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Then

K1 := ∩nEn is a compact subset of K, Λ(K1) > 0.

Wiener’s Criterion =⇒ C∞ \ K1 is a regular domain.

The equilibrium measure µ of K1 is a.c. (w.r.t. Λ):

Suppose Λ(ω) = 0 for ω ⊂ K1; let ω′ = K1 \ ω.

For INn,j ⊂ En we have

Λ(ω′ ∩ INn,j) = Λ(K1 ∩ INn,j) ≥ (1 − 2εn)Λ(INn,j),

and so

µ(ω′ ∩ INn,j) ≥ µn(ω′ ∩ INn,j) ≥ (1 − c
√

εn)µn(INn,j).

Summing up for j:

µ(ω′) = µ(ω′ ∩ En) ≥ (1 − c
√

εn)µn(En) = 1 − c
√

εn.

εn → 0 =⇒ µ(ω′) = 1 =⇒ µ(ω) = 0.
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