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1. Introduction

In our recent papers [4, 5] we presented general decomposition theorems for nonnegative
sesquilinear forms that are common generalizations of several earlier results. For example, these
generalize Ando’s decomposition for positive operators [1] (see also [9]), Gudder’s decomposition
for positive functionals on Banach ∗-algebras [2], and Simon’s decomposition for densely defined
quadratic forms. Moreover, it turned out that there is a connection between the operator short
and the Lebesgue decomposition of measures. The aim of this paper is to give a brief overview
of this topic from an operator theoretic point of view.

2. Generalities

Let X be a complex linear space and let t be a nonnegative sesquilinear form (or shortly:
form) on it. That is, t is a mapping from the Cartesian product X × X to C, which is linear
in the first argument, antilinear in the second argument, and the corresponding quadratic form
t[ · ] : X→ R

∀x ∈ X : t[x] := t(x, x)

is nonnegative. The set F+(X) of forms is partially ordered with respect to the ordering

t ≤ w ⇐⇒ ∀x ∈ X : t[x] ≤ w[x].

If there exists a constant c such that t ≤ c ·w then we say that t is dominated by w (t ≤d w, in
symbols). Since the square root of the quadratic form defines a seminorm on X, then the kernel
of t

ker t :=
{
x ∈ X

∣∣ t[x] = 0
}

is a linear subspace of X. The Hilbert space Ht denotes the completion of the inner product
space X/ker t equipped with the natural inner product

∀x, y ∈ X : (x+ ker t | y + ker t)t := t(x, y).

The form t is w-absolutely continuous if ker w ⊆ ker t, that is to say,

∀x ∈ X : w[x] = 0 =⇒ t[x] = 0

in analogy with the well-known measure case. We say that the form t is w-closable if(
(t[xn − xm]→ 0) ∧ (w[xn]→ 0)

)
=⇒ t[xn]→ 0

holds for all sequence (xn)n∈N ∈ XN. The singularity of t and w means that

∀s ∈ F+(X) :
(
(s ≤ t) ∧ (s ≤ w)

)
=⇒ s = 0.

In the following sections we present two fundamental results of decomposition theory of forms.
The first one is the so-called short-type decomposition, which is a decomposition of a form into
absolutely continuous and singular parts with respect to another one.
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3. Short-type decomposition

In our further considerations an essential role will be played by the concept of the short of a
form, which is introduced as follows. Let Y ⊆ X be a linear subspace, and let t ∈ F+(X). Then
the following formula defines a form

∀x ∈ X : t
Y

[x] := inf
y∈Y

t[x− y] =
∥∥(I − P )(x+ ker t)

∥∥2

t
.

Here P is the orthogonal projection from Ht onto the closure of Yt = {y + ker t | y ∈ Y}.
The form t

Y
is the short of t to the subspace Y.

Theorem 1. Let t,w ∈ F+(X) be forms. Then there exists a short-type decomposition of t with
respect to w. Namely,

t = t
ker w

+ (t− t
ker w

),

where the first summand is w-absolutely continuous and the second one is w-singular. Further-
more, t

ker w
is maximal among those w-absolutely continuous forms that are majorized by t. The

decomposition is unique precisely when t
ker w

is dominated by w.

Corollary 2. Let E be the complex linear space of measurable simple functions over the mea-
surable space (X,A). For a finite measure µ the following formula defines a form on E:

∀ϕ,ψ ∈ E : tµ(ϕ,ψ) :=
∫
X

ϕ · ψ dµ.

If µ and ν are finite measures, then µ is absolutely continuous with respect to ν precisely when tµ
is absolutely continuous with respect to tν . Consequently, if µ = µr + µs is the unique Lebesgue
decomposition of µ with respect to ν [10], then

µr(A) = inf
{∫
A

|1− ϕ|2 dµ
∣∣∣ ϕ ∈ E , ∫

X

|ϕ|2 dν = 0
}
.

Remark 3. It was proved by Krein [3] that if M is a closed linear subspace of H and A ∈
B+(H ), then the set {

S ∈ B+(H )
∣∣ (S ≤ A) ∧ (ranS ⊆M )

}
possesses a greatest element. This follows immediately from Theorem 1, and this is why we say
that the form t

Y
is the short of t to the subspace Y. Indeed, let t(x, y) = (Ax | y) and consider

the form tM⊥ . Since tM⊥ is a bounded form, there exists a unique S ∈ B+(H ) such that
tM⊥(x, y) = (Sx | y) and(

x ∈M⊥ ⇒ (Sx |x) = 0
)
⇒M⊥ ⊆ kerS ⇒ ranS ⊆M .

The maximality of S follows from the maximality of tM⊥ .

4. Lebesgue-type decomposition

In this section we present the Lebesgue-type decomposition of forms.

Let J be the embedding operator from X/ker(t + w) ⊆ Ht+w into Hw, defined by the identifica-
tion

∀x ∈ X : x+ ker(t + w) 7→ x+ ker w.

By setting
S(t,w) :=

{
(xn)n∈N ∈ XN ∣∣ t[xn − xm]→ 0,w[xn]→ 0

}
,

the kernel of J∗∗ can be described by

ker J∗∗ =
{

lim
n→∞

(
xn + ker(t + w)

) ∣∣∣ (xn)n∈N ∈ S(t,w)
}
.
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Let P stand for the orthogonal projection of Ht+w onto {ker J∗∗}⊥, and define r : X → R+ via
the following formula:

∀x ∈ X : r[x] := inf
{

lim
n→∞

t[x− xn]
∣∣ (xn)n∈N ∈ S(t,w)

}
.

For any x ∈ X we have ∥∥P (x+ ker(t + w))
∥∥2

t + w
= r[x] + w[x]

and ∥∥(I − P )(x+ ker(t + w)
∥∥2

t + w
= t[x]− r[x].

In particular, both r and t− r are (quadratic) forms on X.

Theorem 4. Let t and w be forms on the complex linear space X. Then

t = r +(t− r)

is a Lebesgue-type decomposition of t with respect to w. That is, r is closable with respect to w,
and t− r is singular with respect to w. Furthermore,

r = max{s ∈ F+(X) | s ≤ t, s is w-closable}.

That is, r is the maximum of all forms majorized by t, which are closable with respect to w.

We will refer to r (resp., to t− r) as the regular part (resp., the singular part) of t with respect
to w.

Corollary 5. Let t and w be forms on the complex) linear space X, and let r denote the regular
part of t with respect to w. The following statements are equivalent:

(i) t is w-closable;
(ii) r = t;

(iii) ker J∗∗ = {0}.

Corollary 6. Let t and w be forms on the complex linear space X. Let r stand for the regular
part of t with respect to w. Then for each x ∈ X

r[x] = inf
{

lim inf
n→∞

t[x− xn]
∣∣ (xn)n∈N ∈ XN,w[xn]→ 0

}
.

Finally, we mention an application for positive operators. Let A and B be bounded positive
operators on the Hilbert space H . Applying our decomposition theorems to the forms

tA(x, y) := (Ax | y) and tB(x, y) = (Bx | y)

we gain the short-type decomposition

A = A�,B +A⊥,B

and the Lebesgue-type decomposition

A = DBA+ (A−DBA)

of A with respect to B. If ranB is closed, then the shorted part A�,B coincides with the regular
part DBA in the sense of Ando [1], and therefore it is closable with respect to B. Furthermore,
according to [9] we have the following characterization of closed range positive operators.

Theorem 7. Let B be a bounded positive operator on the complex Hilbert space H . Then the
following are equivalent

(i) ranB is closed,
(ii) ∀A ∈ B+(H ) : A�,B ≤d B,

(iii) ∀A ∈ B+(H ) : DBA ≤d B.
If any of (i)− (iii) fulfills, then DBA = A�,B for each positive operator A.
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5. Radon–Nikodym theorems

When we consider absolute continuity, there arises the natural question: can the regularity
concept be characterized by a Radon–Nikodym type result? The following theorem answers this
question in our general situation [8] (see also [6]).

Theorem 8. Let t and w be forms on the complex linear space X. The following statements are
equivalent:

(i) t is w-closable,
(ii) There is a positive selfadjoint (in general, unbounded) operator T in Hw such that X/ker w ⊆

domT 1/2 and

∀x ∈ X : t[x] = ‖T 1/2(x+ ker w)‖2w.

Remark 9. Let A be a not necessarily unital ∗-algebra, and let w be a representable positive
functional on it. That is to say, there exists a Hilbert space Hw, a ∗-representation πw of A to
B(Hw), and a cyclic vector ξw such that

∀a ∈ A : w(a) =
(
πw(a)ξw

∣∣ ξw)w.
Now, we have the following characterization: let v and w be representable functionals on A.
Then w is v-absolutely continuous in the sense of Gudder [2] precisely when there exists a
positive selfadjoint operator W on Hv such that

πv〈A〉ξv ⊆ domW

and

∀a, b ∈ A : w(b∗a) =
(
Wπv(a)ξv

∣∣ Wπv(b)ξv
)
v
.

The operators T and W in Theorem 8 and Remark 9 above might be called Radon–Nikodym
derivatives.
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