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Abstract. We investigate the wave equation with an integral term in a disk. Our goal is to
write the solution as Fourier series under a radial symmetric assumption on the data. The
expression of the solution obtained allows us to get explicit Ingham type estimates, and hence
reachability results.

10th Workshop Functional Analysis and its Applications, September 7–12, 2015, Kočovce, Slovakia, 34–38

In this note we will consider

(1) utt −△u+ β

∫ t

0
e−η(t−s)△u(s, x, y)ds = 0 , t ≥ 0 , (x, y) ∈ Ω,

where △ denotes the Laplace operator in a circular disk Ω of radius R in R2 and 0 < β < η.
It’s natural to use polar coordinates. Indeed, taking into account that in polar coordinates the
Laplacian is given by

△ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
,

we can rewrite equation (1) as:

utt −
1

r

(
rur

)
r
− 1

r2
uθθ +

β

r2

∫ t

0
e−η(t−s)

(
r
(
rur

)
r
+ uθθ

)
(s, r, θ)ds = 0 ,

t ≥ 0 , (r, θ) ∈ D,

(2)

where D = {(r, θ) : 0 < r < R , θ ∈ [0, 2π]}, and solve for u as a function of t, r and θ.
For the sake of completeness, we briefly recall standard argumentations. To determine the

eigenvalues of the Laplacian, we have to solve

(3) −△u(r, θ) = λ2u(r, θ)

(4) u(R, θ) = 0

To this end, we attempt separation of variables by writing

u(r, θ) = R(r)Θ(θ).

Then (3) becomes

r2
d2R
dr2

Θ+ r
dR
dr

Θ+Rd2Θ

dθ2
+ λ2r2RΘ = 0 .

If we divide by RΘ, then we obtain

(5)
r2

R
d2R
dr2

+
r

R
dR
dr

+
1

θ

d2Θ

dθ2
+ λ2r2 = 0 .

The function Θ must be sinusoidal, that is

(6)
1

θ

d2Θ

dθ2
= −n2,

and hence, for an ∈ C we have

(7) Θ(θ) = ane
inθ + ane

−inθ.
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Plugging (6) into (5), we obtain

(8) r2
d2R
dr2

+ r
dR
dr

+ (λ2r2 − n2)R = 0 ,

with the boundary condition R(R) = 0. We can eliminate λ2 from the previous equation by
making a change of variables. Indeed, if we set x = λr, then the equation (8) becomes

(9) x2
d2R
dx2

+ x
dR
dx

+ (x2 − n2)R = 0 ,

which is called Bessel’s equation of order n. A solution of (9) is given by

(10) Jn(x) =

∞∑
h=0

(−1)h

h!(h+ n)!

(x
2

)n+2h
,

which is called the Bessel function of the first kind of order n. It follows that a solution of (8)
is given by Jn(x) = Jn(λr). The boundary condition R(R) = 0 is satisfied if

Jn(λR) = 0,

that is

λ =
λnk

R
,

where λnk, k ∈ N, are the positive zeros of Jn.
We recall the following result, see [5, Section 6].

Theorem 1. Let A : D(A) ⊂ H → H be a self-adjoint positive linear operator on a Hilbert
space H with dense domain D(A). Assume that {λj}j≥1 is a strictly increasing sequence of
eigenvalues for A, with λj > 0 and λj → ∞, and the sequence {wj}j≥1 of the corresponding
eigenvectors constitutes an orthogonal basis for H.

The general solution of equation

(11) u′′(t) +Au(t)− β

∫ t

0
e−η(t−s)Au(s)ds = 0 , t ≥ 0 ,

can be written as the following series

(12) u(t) =

∞∑
j=1

(
Rje

rjt + Cje
iωjt + Cje

−iωjt
)
wj , Rj ∈ R, Cj ∈ C,

where rj ∈ R and ωj ∈ C are defined by

rj = β − η +O
( 1

λj

)
,

ωj =
√

λj +
β

2

(3
4
β − η

) 1√
λj

+ i
β

2
+O

( 1

λj

)
.

(13)

Let H = L2(D) be endowed with the scalar product and norm

⟨u, v⟩ :=
∫ R

0

∫ 2π

0
ru(r, θ)v(r, θ) drdθ , ∥u∥ :=

(∫ R

0

∫ 2π

0
r|u(r, θ)|2 drdθ

)1/2

u, v ∈ L2(D) .

The operator A : D(A) ⊂ H → H is defined by

D(A) = H2(D) ∩H1
0 (D)

Au = −△u u ∈ D(A) .

It is well known that A is a self-adjoint positive operator on H with dense domain D(A), the

eigenvalues for A are
(
λnk
R

)2
and the corresponding eigenfunctions are Jn

(
λnk
R r

)
e±inθ, which

form an orthogonal basis for L2(D).
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In order to simplify notations, we will define J−n to be the same as Jn whenever n is an
integer:

J−n := Jn, λ−nk := λnk , n ∈ N ∪ {0}, k ∈ N .

We are going to establish the result in the 2-D case

utt −
1

r

(
rur

)
r
− 1

r2
uθθ +

β

r2

∫ t

0
e−η(t−s)

(
r
(
rur

)
r
+ uθθ

)
(s, r, θ)ds = 0 ,

t ≥ 0 , (r, θ) ∈ D,

(14)

Therefore, thanks to (12) we have

(15) u(t, r, θ) =

∞∑
n=−∞

∞∑
k=1

(
Rnke

rnkt+inθ + Cnke
i(ωnkt+nθ) + Cnke

−i(ωnkt+nθ)
)
Jn

(λnk

R
r
)
,

where rnk ∈ R and ωnk ∈ C are defined by

rnk = β − η +O
( 1

λ2
nk

)
, n ∈ N

(16) ℜωnk =
λnk

R
+

β

2

(3
4
β − η

) R

λnk
+O

( 1

λ2
nk

)
, ℑωnk =

β

2
+O

( 1

λ2
nk

)
, n ∈ N,

r−nk := rnk ω−nk := −ωnk , n ∈ N.
The coefficients Rnk , Cnk are complex numbers to determine and Rnk = Rnk. If we impose the
initial conditions

(17) u(0, r, θ) = f(r)eiθ + f(r)e−iθ , ut(0, r, θ) = 0 ,

then we obtain (R = 1, 0 < r < 1)

(18) u(0, r, θ) =
∞∑

n=−∞

∞∑
k=1

(
Rnke

inθ + Cnke
inθ + Cnke

−inθ
)
Jn(λnkr) = f(r)eiθ + f(r)e−iθ

(19)
∞∑
n=0
n ̸=1

∞∑
k=1

(
Rnk + Cnk + C−nk

)
Jn(λnkr)e

inθ = 0

(20)

∞∑
n=0
n ̸=1

∞∑
k=1

(
R−nk + C−nk + Cnk

)
Jn(λnkr)e

−inθ = 0

(21) Rnk + Cnk + C−nk = 0 , ∀n ∈ N , n ̸= 1 , k ∈ N
(22)
∞∑
k=1

(
R1k +C1k +C−1k

)
J1(λ1kr)e

iθ +

∞∑
k=1

(
R−1k +C−1k +C1k

)
J1(λ1kr)e

−iθ = f(r)eiθ + f(r)e−iθ

(23)

∞∑
k=1

(
R1k + C1k + C−1k

)
J1(λ1kr) = f(r)

(24)

∞∑
k=1

(
R−1k + C−1k + C1k

)
J1(λ1kr) = f(r)

by Fourier-Bessel series expansion

R1k + C1k + C−1k =
2

J2
(
λ1k

)2 ∫ 1

0
rf(r)J1

(
λ1kr

)
dr
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R−1k + C−1k + C1k =
2

J2
(
λ1k

)2 ∫ 1

0
rf(r)J1

(
λ1kr

)
dr

(25) ut(0, r, θ) =

∞∑
n=−∞

∞∑
k=1

(
rnkRnke

inθ + iωnkCnke
inθ − iωnkCnke

−inθ
)
Jn

(λnk

R
r
)
= 0

(26) rnkRnk + iωnk(Cnk + C−nk) = 0 , ∀n ∈ N , k ∈ N

(27) rnkR−nk − iωnk(C−nk + Cnk) = 0 , ∀n ∈ N , k ∈ N .

In view of (21) it follows

Rnk = −Cnk − C−nk , ∀n ∈ N , n ̸= 1 , k ∈ N

(28) (iωnk − rnk)(Cnk + C−nk) = 0 , ∀n ∈ N , k ∈ N

Cnk + C−nk = Rnk = 0 , ∀n ∈ N , n ̸= 1 , k ∈ N

u(t, r, θ) =

∞∑
k=1

(
R1ke

r1kt + (C1k + C−1k)e
iω1kt

)
J1

(λ1k

R
r
)
eiθ

+

∞∑
k=1

(
R1ke

r1kt + (C1k + C−1k)e
−iω1kt

)
J1

(λ1k

R
r
)
e−iθ

(29)

where

C1k + C−1k =
2

J2
(
λ1k

)2 ∫ 1

0
rf(r)J1

(
λ1kr

)
dr −R1k

R1k = − 2iω1k

J2
(
λ1k

)2
(r1k − iω1k)

∫ 1

0
rf(r)J1

(
λ1kr

)
dr

C1k + C−1k =
2r1k

J2
(
λ1k

)2
(r1k − iω1k)

∫ 1

0
rf(r)J1

(
λ1kr

)
dr .

Suppose that the membrane is fixed along the boundary circle r = R. The initial deflection
f(r) and the initial velocity depend only on r, not on θ, so that we expect that the vibration
is radially symmetric. Hence the deflection u = u(t, r) at any instant t and uθθ = 0. So, in
formula (6) we have only n = 0 and the Bessel’s equation (9) is only of order 0. Therefore, the
expression (15) for the solution is brought to

(30) u(t, r) =

∞∑
k=1

(Rke
rkt + Cke

iωkt + Cke
−iωkt)J0

(λk

R
r
)
,

where J0 denotes the Bessel function of order 0 and λk are the positive zeros of J0. We note
that

(31) ur(t, R) =
1

R

∞∑
k=1

λk(Rke
rkt + Cke

iωkt + Cke
−iωkt)J ′

0

(
λk

)
.

Now, by the definition (10) of Bessel functions it easily follows

dJ0
dx

(x) = −J1(x) .

So, if we use the previous formula in (31), then we have

(32) ur(t, R) = − 1

R

∞∑
k=1

λk(Rke
rkt + Cke

iωkt + Cke
−iωkt)J1

(
λk

)
.
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The following observability estimate holds true: If T > 2R there exist two constants c1 and c2
such that

c1

∞∑
k=1

λ2
k|J1

(
λk)|2|Ck|2 ≤

∫ T

0
| ur(t, R)|2dt ≤ c2

∞∑
k=1

λ2
k|J1

(
λk)|2|Ck|2 .

This is an illustrative case of the general theory leading to simply the computations.
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