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SYMMETRIES FOR AN INTEGRO-DIFFERENTIAL
EQUATION IN A DISK

PAOLA LORETI AND DANIELA SFORZA

ABSTRACT. We investigate the wave equation with an integral term in a disk. Our goal is to
write the solution as Fourier series under a radial symmetric assumption on the data. The
expression of the solution obtained allows us to get explicit Ingham type estimates, and hence
reachability results.

In this note we will consider
t
(1) Ut — Au + 6/ e_n(t_S)Au(Svl‘a y)ds = Oa t > 07 (:E,y) € Qv
0

where A denotes the Laplace operator in a circular disk Q of radius R in R? and 0 < 8 < 1.
It’s natural to use polar coordinates. Indeed, taking into account that in polar coordinates the
Laplacian is given by
2
a=l? (72) 10
ror\ or r2 062"’
we can rewrite equation (1) as:

1 1 ¢
w = —(rur), = g + T’% /0 e (v (ruy), + ey ) (5,7, 6)ds = 0,

t>0, (r,0) €D,

where D = {(r,0): 0 <r < R, 0 € [0,27]}, and solve for u as a function of ¢, r and 6.
For the sake of completeness, we briefly recall standard argumentations. To determine the
eigenvalues of the Laplacian, we have to solve

(3) — Au(r, 0) = Nu(r, 0)

(2)

(4) u(R,0) =0
To this end, we attempt separation of variables by writing
u(r,0) = R(r)©(0).

Then (3) becomes

d*R dR ES)
207 ar a~o 2 2 _
T dr2@+rdr@+7?,d92+)\r7€@ 0.

If we divide by RO, then we obtain
r?d*R rdR 1d*©

5 T —— A2 =0,
®) RarZ "Rar ToaE T
The function ® must be sinusoidal, that is

1d%0 5
6 il
(6) 0dz ~ "

and hence, for a,, € C we have
(7) 0(0) = ane™ + aye .
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Plugging (6) into (5), we obtain
d*R dR
(8) r? 07 +r O + (M2 —n?)R =0,

with the boundary condition R(R) = 0. We can eliminate A\? from the previous equation by
making a change of variables. Indeed, if we set © = Ar, then the equation (8) becomes

*R  dR
(9) QT+$dx+(x2—n2)R:0,

which is called Bessel’s equation of order n. A solution of (9) is given by

(10) Zh, h+n ( )Mh,

which is called the Bessel function of the first kind of order n. It follows that a solution of (8)
is given by J,,(z) = J,(\r). The boundary condition R(R) = 0 is satisfied if

Jn(AR) =0,
that is \
)\ = 2nk
R M

where Ak, k € N, are the positive zeros of J,,.
We recall the following result, see [5, Section 6].

Theorem 1. Let A: D(A) C H — H be a self-adjoint positive linear operator on a Hilbert
space H with dense domain D(A). Assume that {\;j}j>1 is a strictly increasing sequence of
eigenvalues for A, with A\j > 0 and \; — oo, and the sequence {wj}j>1 of the corresponding
eigenvectors constitutes an orthogonal basis for H.

The general solution of equation

(11) (1) + Au(t) 5/ 09 Au(s)ds =0, >0,

can be written as the following series

(12) u(t) =Y (Rjes" + Cje™i' + Cje ™M w;, R €R, C; €C,
j=1

where r; € R and w; € C are defined by
1
r :/8_77+O N /o
j (%)

oy 5 B3 n) v o)

Let H = L?(D) be endowed with the scalar product and norm

2 27 1/2
(u, vy := / / u(r,0)v(r,0) drdd, ||u| = </ / r|u(r, 6)]| drd9> u,v € L*(D).

The operator A : D(A) C H — H is defined by
D(A) = H*(D) N Hy(D)

(13)

Au=—Au u € D(A).

It is well known that A is a self-adjoint positive operator on H with dense domain D(A), the
eigenvalues for A are (%)2

form an orthogonal basis for L?(D).

and the corresponding eigenfunctions are Jn(%’“r) e wwhich
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In order to simplify notations, we will define J_, to be the same as J, whenever n is an
integer:
Joni=Jdn,  Apk i = Ak, neNuU{0}, keN.
We are going to establish the result in the 2-D case

1 1 B[ s
(14) Ut — ;(Tur)r - ﬁuﬁe + 7“2/0 et )<7“(7”u,,)r + u@@) (s,7,0)ds =0,

t>0, (r,d)eD
Therefore, thanks to (12) we have
A
rpkt+ind i(wnit+nb) —i(Wnpt+nh) \nk
(15) u(t,r,0) = Z Z(Rke + Cpie + Chie )Jn<Rr>,

n=—o00 k=1

where 7,1 € R and w,; € C are defined by

g = 08 — 77+O<);k>, neN

(16) %wnk:)\gg%-g(zﬁ—n))iv—{-O(%), Swnk 5+O()\2), n €N,
T—nk ‘= Tnk Wenk := —Wne, neEN.

The coefficients R, , Cp,, are complex numbers to determine and R, = R,;. If we impose the
initial conditions

(17) u(0,7,0) = f(r)e”” + f(r)e™,  uy(0,7,6) =0
then we obtain (R=1,0<r <1)

(18)  u(0,r,0) Z Z(R bt Ce™ + T ™ ) JuOer) = f(r)e™ + T(r)e ™™

n=—00 k=1

(19) >3 (Buk+ G+ T Jn )™ = 0
ezt
(20) Z Z <R—nk +Cpk + CTk) In(Ankr)e” ™ =0
n=0 k=1
n#l
(21) Ry +Cor+C =0, YneN,n#1,keN
(22)

Z Rig + Cri 4+ C1x) Ji(Agr)e” + > (Roak + Coa+ Cug) Ji(Agr)e ™ = f(r)e + f(r)e™
=1 k=1

(23) Z (Rig + Cix + C1g) Ju(Aagr) = f(r)
k=1

(24) > (Rotk + Coap + Crg) L (Aer) = £(r)
k=1

by Fourier-Bessel series expansion

- ) 1
Ry +Cipy+Cqp = 2/ rf(r)Jy ()xlkr) dr
J2(Ar)” Jo
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. ) 1
Riyp+C 1y +Cip=—2 / rf(r)J ()qk?“) dr
Jz ()\lk) 0

. A
ind e —inb \nk —
(25) ug(0,7,0) n_zoo; ok Ry + i Crie™ — iwnpCrpe )Jn< i 7") 0
(26) rnkRnk + ank(cnk: + C—nk) = 0, vn €N ’ keN
(27) Tk R_nk — i@k (Copi + Cp) =0, YneN,keN.
In view of (21) it follows
Ruyy=-Cp—C_pry, YneN n#1,keN
(28) (iwnk — k) (Crk + C—x) =0, VneN,keN
Cok+C_ =R =0, VneN,n#1,keN
Tt 4 twy gt Ak i0
u(t,r,0) ;(lee (Cir +C_1p)e )J1< Rr)e
(29) o \
mt — 1wkt Ak —i6
+ ; (lee Clk +C_1p)e )J1< & 7“)6
where

- 9 1
Cik+C_1k = 2/ rf(r)Jy (/\UJ') dr — Ry,
J: (Alk) 0

R 21k /1 rf(r)Jy(Ar) dr
= — 1( A1k
Jo ()\1k)2(rlk — iwiy) Jo
—_—_ 2T1k 1
Cip +C_1x = 3 - / rf(r)Jy (AlkT‘) dr.
Ja(Mik) " (rip — iwik)

Suppose that the membrane is fixed along the boundary circle r = R. The initial deflection
f(r) and the initial velocity depend only on r, not on #, so that we expect that the vibration
is radially symmetric. Hence the deflection u = w(¢,r) at any instant ¢t and ugg = 0. So, in
formula (6) we have only n = 0 and the Bessel’s equation (9) is only of order 0. Therefore, the
expression (15) for the solution is brought to

o

' o~y A
(30) u(t,r) = ;(Rkemt + Cre™*t 4+ Cre ™M) Jy (fkr) ;

where Jy denotes the Bessel function of order 0 and A, are the positive zeros of Jy. We note
that

(31) ur(t,R) = Z)\k Rie™! + Cre™r + Cre ™ ) JE (M) -
k 1
Now, by the definition (10) of Bessel functions it easily follows

%(m) =—Ji(z).

So, if we use the previous formula in (31), then we have

1 & . o
(32) up(t, R) = - > Ne(Bie™! + Crest + Cre ™) 1y (M) -
1
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The following observability estimate holds true: If T' > 2R there exist two constants ¢; and cs
such that

cle |1 () P |Ckf? < / | ur(t, R)| dt<CQZA |1 (M) P C)? -
k=1

This is an illustratlve case of the general theory leading to simply the computations.
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