EXAMPLES OF MORPHISMS OF OPERATOR EFFECT ALGEBRAS

MICHAL ZAJAC

1. Basic definitions

Let \mathscr{H} be a complex separable Hilbert space. The set $\mathcal{E}(\mathscr{H})$ of Hilbert space effects, i.e. bounded selfadjoint operators E such that $0 \leq (Ex, x) \leq (x, x)$ for all $x \in \mathscr{H}$ was a prototype of abstract effect algebra defined in [1].

Definition 1. A partial algebra $(E, \oplus, 0, 1)$ is called an *effect algebra if* 0, 1 are two distinguished elements and \oplus is a partially defined binary operation on E satisfying $\forall x, y.z \in E$

(E1) $x \oplus y = y \oplus x$ if $x \oplus y$ is defined,

(E2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,

(E3) For every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$,

(E4) If $1 \oplus x$ is defined, then x = 0.

A partial order on an effect algebra A is defined as

$$x \le y \iff \exists z \in E \text{ for which } x \oplus z = y \text{ (we write } z = y \ominus x).$$
 (1)

Definition 2.

- (i) Let $(E, \oplus, 0, 1)$ be an effect algebra. $\omega : E \to [0, 1] \subset \mathbb{R}$ is a state if $\omega(0) = 0$, $\omega(1) = 1$ and if $x \oplus y$ is defined, then $\omega(x \oplus y) = \omega(x) + \omega(y)$.
- (ii) A set \mathcal{M} of states is called an ordering set of states if $a \leq b \iff (\omega(a) \leq \omega(b) \ \forall \omega \in \mathcal{M})$.

It was proved in [2, Theorem 3] that if an effect algebra E has an ordering set of states, then E can be embedded into $\mathcal{E}(\mathscr{H})$ (i.e. there is an injective homomorphism $E \to \mathcal{E}(\mathscr{H})$). One of the generalizations of effect algebra is (see, e.g., [2, 3])

Definition 3. A generalized effect algebra $(E, \oplus, 0)$ is a set E with element $0 \in E$ and partial binary operation \oplus satisfying for any $x, y, z \in E$

(GE1) $x \oplus y = y \oplus x$ if one side is defined, (GE2) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined, (GE3) If $x \oplus y = x \oplus z$ then y = z, (GE4) If $x \oplus y = 0$ then x = y = 0, (GE5) $x \oplus 0 = x$ for all $x \in E$.

Here we shall investigate generalized effect algebras $\mathcal{G}_D(\mathscr{H})$ consisting of symmetric operators [4]. Let D be a dense linear subspace of \mathscr{H} and

 $\mathcal{G}_D(\mathscr{H}) = \{A : D \to \mathscr{H}; A \text{ is a positive linear operator defined on } D\}.$ (2)

Obviously, $\mathcal{G}_D(\mathscr{H})$ with usual sum of operators is a generalized effect algebra.

¹⁹⁹¹ Mathematics Subject Classification. 81P10; 47B25.

Supported by the Ministry of Education of Slovak Republic under grant VEGA-1/0426/12.

2. Morphisms of operator generalized effect algebras

First, we recall the following result [5], [7, Chap. 2.7].

Theorem 4. Let $\varphi : \mathcal{E}(\mathcal{H}) \to \mathcal{E}(\mathcal{H})$ be a bijective map which preserves the order in both directions and let there exist $\lambda \in (0,1)$ such that $\varphi(\lambda I) = \lambda I$. Then there exists a unitary or antiunitary operator U such that

$$\varphi(A) = UAU^* \qquad (A \in \mathcal{E}(\mathcal{H})). \tag{3}$$

Note that since the order is given by (1), any bijective automorphism of $\mathcal{E}(\mathcal{H})$ preserves the order in both direction.

It is now natural to ask if Theorem 4 can be generalized to generalized effect algebras.

We may identify the bounded operators in $\mathcal{G}_D(\mathscr{H})$ with their extensions to the whole \mathscr{H} . Let D be a fixed dense subspace of \mathscr{H} . If $\varphi : \mathcal{G}_D(\mathscr{H}) \to \mathcal{G}_D(\mathscr{H})$ is given by (3), then $U^*D \subset D$, otherwise UAU^* need not be defined for unbounded operators $A \in \mathcal{G}_D(\mathscr{H})$.

We are able to give only trivial examples of homomorphisms of two operator generalized effect algebras. First we consider the case of the "smallest" dense subspaces D_1, D_2 .

Example 5. Let $\{e_k\}_{k=0}^{\infty}$, $\{f_k\}_{k=0}^{\infty}$ be orthonormal bases of \mathscr{H} . Let D_1 and D_2 be the linear (not closed) spans of $\{e_k\}$ and $\{f_k\}$, respectively. Then

$$Ue_k = f_k$$
, $U^*f_k = e_k$, $k = 0, 1, 2...$

defines a unitary operator for which

$$\varphi(A) = UAU^* \qquad (A \in \mathcal{G}_{D_1}(\mathscr{H}))$$

is a bijective homomorphism $\mathcal{G}_{D_1}(\mathscr{H}) \to \mathcal{G}_{D_2}(\mathscr{H})$.

If $D_2 \subset D_1$, then the restriction is a natural example of homomorphisms $\mathcal{G}_{D_1}(\mathscr{H}) \to \mathcal{G}_{D_2}(\mathscr{H})$. Since there exists at most one extension of $A \in \mathcal{G}_{D_2}(\mathscr{H})$ to the bigger space D_2 we obtain the following example. This is also of the form (3) with U = I, the identity operator.

Example 6. Let $D_2 \subset D_1$ be dense subsets of \mathscr{H} . Then

$$\varphi(A) = A | D_2 \qquad (A \in \mathcal{G}_{D_1}(\mathscr{H}))$$

is an injective but not surjective homomorphism $\mathcal{G}_{D_1}(\mathscr{H}) \to \mathcal{G}_{D_2}(\mathscr{H})$.

We conclude with

Conjecture. Let \mathscr{H} be a complex separable Hilbert space. There exist two dense subspaces D_1, D_2 such that there are no nonzero homomorphisms

$$\varphi_1: \mathcal{G}_{D_1}(\mathscr{H}) \to \mathcal{G}_{D_2}(\mathscr{H}) \text{ and } \varphi_2: \mathcal{G}_{D_2}(\mathscr{H}) \to \mathcal{G}_{D_1}(\mathscr{H}).$$

References

- [1] D.J. Foulis, M.K. Bennet, Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.
- [2] Z. Riečanová, M. Zajac, Hilbert space effect-representations of effect algebras, Rep. Math. Phys. 70 (2012), 283–290.
- [3] M. Polakovič, D-weak operator topology and some its properties, Proceedings 10th Workshop Functional Analysis, (2015), -.
- M. Polakovič, Z. Riečanová, Generalized effect algebras of positive operators densely defined on Hilbert space, Int. J. Theor. Phys. 50 (2011), 1167–1674.
- [5] L. Molnár, Characterization of the automorphisms of Hilbert space effect algebras, Commun. Math. Phys. 223 (2001), 437–450
- [6] L. Molnár, Order automorphisms of quantum observables and effects, 6th Workshop functional analysis and its applications, September 10-15, 2007, Nemecká, Slovakia, p. 49
- [7] L. Molnár, Selected Preserver Problem on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics 1895, Springer-Verlag, Berlin, Heidelberg 2007.

INSTITUTE OF COMPUTER SCIENCE AND MATHEMATICS, FEI STU ILKOVIČOVA 3, SK-81219 BRATISLAVA *E-mail address*: michal.zajac@stuba.sk