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Abstract. We deal with an optimal control problem governed by a nonlinear hyperbolic initial-
boundary value problem describing the perpendicular vibrations of an anisotropic plate against
an elastic foundation. A variable thickness of a plate plays the role of a control variable.
The original equation for the deflection is regularized in order to derive necessary optimality
conditions.
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1. Introduction

Shape design optimization problems belong to frequently solved problems with many engi-
neering applications. We deal here with an optimal design problem for an elastic anisotropic
plate vibrating against an elastic called also the Winkler foundation. A variable thickness of
a plate plays the role of a control variable. The similar problems for the axisymmetric plate
and the stationary elastic Bernoulli beam are investigated in [5] and [6] respectively. We have
considered the control problem for an elastic beam vibrating against an elastic foundation in
[2]. Due to the variable thickness e the equation for the movement of the plate has the form

e(x)utt + (e3(x)aijkℓuxixj )xkxℓ
+ q(x)[u+ 1

2(e(x)− emax)]
+ = f(t, x) in (0, T ]×Ω .

In order to derive not only the existence of an optimal variable thickness but also the necessary
optimality conditions we regularize the function ω 7→ ω+ by

ω 7→ gδ(ω), gδ(ω) =


0 for w ≤ 0 ,
6
δ2
ω3 − 8

δ3
ω4 + 3

δ4
ω5 for 0 < ω < δ ,

ω for ω ≥ δ .

We remark that instead of the function gδ we can use any not negative nondecreasing func-
tion g ∈ C2(R) of the variable ω vanishing for ω ≤ 0, equaled to ω for ω ≥ δ and fulfilling
maxω∈[0,δ] |gδ(ω)| ≤ Mδ.

2. Solving of the state problem

2.1. Setting of the state problem. We consider an anisotropic plate with the distance 1
2emax

between the middle surface and the foundation. The middle surface Ω ⊂ R2 is assumed to have
a Lipschitz continuous boundary ∂Ω with a unit outer normal vector n⃗(ξ), ξ ∈ ∂Ω. The
variable thickness of the plate is expressed by a positive function x 7→ e(x), x ∈ Ω̄, the positive
constant ρ is the density of the material and a positive function x 7→ q0(x), x ∈ Ω̄ represents
the stiffness of the foundation. The plate is clamped on its boundary. Let F : (0, T ] × Ω 7→ R
be a perpendicular load per a square unit acting on the plate. Then the vertical displacement
u : (0, T ]×Ω 7→ R is a solution of the following hyperbolic equation

1
2ρe(x)utt + (e3(x)Aijkℓuxixj )xkxℓ

+ q0(x)gδ(u+ 1
2(e(x)− emax)) = F (t, x) in (0, T ]×Ω
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with a symmetric and positively definite tensor {Aijkℓ}. Let u0, v0 : Ω 7→ R be the initial

displacement and velocity, aijkℓ =
2
ρAijkℓ, q = 2q0

ρ , f = 2F
ρ be the new mechanical and material

characteristics. Then the vertical displacement u : (0, T ]×Ω 7→ R solves the hyperbolic initial-
boundary value problem

e(x)utt + (e3(x)aijkℓuxixj )xkxℓ
+ q(x)gδ(u+ 1

2(e(x)− emax)) = f(t, x) in (0, T ]×Ω,(1)

u(t, ξ) =
∂u

∂n⃗
(t, ξ) = 0, t ∈ (0, T ], ξ ∈ ∂Ω(2)

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω.(3)

We introduce the Hilbert spaces

H ≡ L2(Ω), Hk(Ω) = {y ∈ H : Dαy ∈ H, |α| = k},

with the standard inner products (·, ·), (·, ·)k, the norms | · |0, ∥ · ∥k and

V ≡ H̊2(Ω) = {y ∈ H2(Ω) : y(ξ) =
∂y

∂n⃗
(ξ) = 0, ξ ∈ ∂Ω (in the sense of traces)}

with the inner product and the norm

((y, z)) =

∫
Ω
yxixj (x)zxixj (x) dx, ∥y∥ = ((y, y))1/2, y, z ∈ V.

We denote by V ∗ the dual space of linear bounded functionals over V with duality pairing
⟨F, y⟩∗ = F (y), F ∈ V ∗, y ∈ V. It is a Banach space with a norm ∥ · ∥∗.
The spaces V, H, V ∗ form the Gelfand triple meaning the dense and compact embedings

V ↪→↪→ H ↪→↪→ V ∗.

We set I = (0, T ), Q = I × Ω. For a Banach space X we denote by Lp(I;X) the Banach
space of all functions y : I 7→ X such that ∥y(·)∥X ∈ Lp(0, T ), p ≥ 1, by L∞(I;X) the space of
essentially bounded functions with values in X, by C(Ī;X) the space of continuous functions
y : Ī 7→ X, Ī = [0, T ]. For k ∈ N we denote by Ck(Ī;X) the spaces of k-times continuously
differentiable functions defined on Ī with values in X. If X is a Hilbert space we set

Hk(I;X) = {v ∈ Ck−1(Ī;X) :
dkv

dtk
∈ L2(I;X)}

the Hilbert spaces with the inner products

(u, v)Hk(I,X) =

∫
I
[(u, v)X +

k∑
j=1

(uj , vj)X ] dt, k ∈ N.

We denote by ẇ, ẅ and
...
w the first, the second and the third time derivative of a function

w : I → X. In order to derive necessary optimality conditions in the next chapter we assume
stronger regularity of data:

u0 ∈ V ∩H4(Ω), u0(x) +
1
2e(x) ≤

1
2emax ∀x ∈ Ω;

v0 ∈ V, f ∈ H1(I;H), 0 < q ∈ C(Ω̄), e ∈ Ead;

Ead =
{
e ∈ H2(Ω) : 0 < emin ≤ e(x) ≤ emax ∀x ∈ Ω̄, ∥e∥2 ≤ ê

}
.

(4)

The symmetric and positively definite fourth-order tensor aijkℓ fulfils ∀ i, j, k, ℓ ∈ {1, 2}:

aijkℓ = akℓij = ajikℓ, α εijεij ≤ aijkℓ εijεkℓ ≤ β εijεij ∀ {εij} ∈ R2×2
sym, α > 0,

where the Einstein summation convention is employed and R2×2
sym is the set of all second-order

symmetric tensors.
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Definition 1. A function u is a weak solution of the problem (1)-(3) if ü ∈ L2(Q), u ∈ L2(I;V ),
there hold the identity∫

Q

[
e(x)üy + e3(x)aijkℓuxixjyxkxℓ

+ q(x)gδ(u+ 1
2(e(x)− emax))y

]
dx dt

=

∫
Q
f(t, x)y dx dt ∀ y ∈ L2(I;V )

(5)

and the initial conditions

(6) u(0) = u0, u̇(0) = v0.

2.2. Existence and uniqueness of the state problem. We verify the existence and unique-
ness of a weak solution.

Theorem 2. There exists a unique solution u of the problem (5),(6) such that
u̇ ∈ L∞(I;V ) ∩ C(Ī;H2−ε(Ω)) ∀ε > 0, ü ∈ L∞(I;H),

...
u ∈ L2(I;V

∗) and there holds the
estimate

∥u̇∥L∞(I,V ) + ∥ü∥L∞(I,H) + ∥...u∥L2(I,V ∗) ≤ C0(α, β, emin, emax, ê, u0, v0, f, q).(7)

Proof. Using the Galerkin method we obtain the approximation um of a solution (5),(6) which
can be extended to the whole interval [0, T ] with the a priori estimates

(8) ∥u̇m∥2C(Ī,H) + ∥um∥2C(Ī,V ) ≤ C1(α, β, emin, emax, ê, u0, v0, f, q),

(9) ∥üm∥2C(Ī,H) + ∥u̇m∥2C(Ī,V ) ≤ C2(α, β, emin, emax, ê, u0, v0, f, q).

Applying the estimates (8), (9), the Aubin-Lions compact imbedding theorem [4], Sobolev imbed-
ding theorems and the interpolation theorems in Sobolev spaces [3] we obtain for a subsequence
of {um} (denoted again by {um}) a function u ∈ C(Ī , V ) with u̇ ∈ L∞(I, V ), ü ∈ L∞(I,H) and
the convergences

üm ⇀∗ ü in L∞(I,H),

u̇m ⇀∗ u̇ in L∞(I;V ),

um → u in C(Ī;V ),

um → u in C1(Ī;H2−ε(Ω)) ∀ ε > 0,

um → u in C1(Ī;C(Ω̄)).

(10)

The convergence process (10) implies that a function u fulfils for a.e. t ∈ I∫
Ω

[
eüw + e3(x)aijkℓuxixjwxkxℓ

+ q(x)gδ(u+ 1
2(e(x)− emax))w

]
dx

=

∫
Ω
fw dx, ∀w ∈ V.

(11)

The identity (5) follows directly after setting w ≡ y(t, ·), y ∈ L2(I;V ) in (11).
Due to the differentiability of gδ, f and the relation u̇ ∈ L∞(I;V ) we obtain the third time

derivative
...
u ∈ L2(I;V

∗) fulfilling∫
Q

[
e(x)

...
uy + e3(x)aijkℓ(u̇xixjyxkxℓ

+ q(x)g′δ(u+ 1
2(e(x)− emax))u̇ y

]
dx dt

=

∫
Q
ḟ(t, x)y dx dt ∀ y ∈ L2(I;V ).

(12)

The estimate (9) together with the convergences (10) and the relation (12) implies the estimate
(7). The proof of the uniqueness can be performed in a standard way using the Gronwall lemma.

Remark 3. The constant C0(α, β, emin, emax, ê, u0, v0, f, q) in the estimate (7) does not depend
on δ for δ ∈ (0, δ0).
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3. Optimal control problem

3.1. The existence of an optimal thickness. We consider a cost functional J : L2(I;V )×
H2(Ω) 7→ R fulfilling the assumption

(13) un ⇀ u in L2(I;V ), en ⇀ e in H2(Ω) ⇒ J(u, e) ≤ lim inf
n→∞

J(un, en)

and formulate

Optimal control problem P : To find a control e∗ ∈ Ead such that

(14) J(u(e∗), e∗) ≤ J(u(e), e) ∀e ∈ Ead,

where u(e) is a (unique) weak solution of the Problem (1)-(3).

Theorem 4. There exists a solution of the Optimal control problem P.

Proof. We use the weak lower semicontinuity property of the functional J and the compactness
of the admissible set Ead of thicknesses in the space C(Ω̄). Let {en} ⊂ Ead be a minimizing
sequence for (14). The set Ead is convex and closed and hence a weakly closed in H2(Ω) as
the closed convex set. Then there exists a subsequence of {en} (denoted again by {en}) and an
element e∗ ∈ Ead such that

(15) en ⇀ e∗ in H2(Ω), en → e∗ in C(Ω̄).

The a priori estimates (7), Sobolev imbedding theorems and the Ascoli theorem on uniform
convergence on Ī imply the existence of a function u∗ ∈ C(Ī;V ) such that u̇ ∈ L∞(I;V ) ∩
C(Ī;H), ü ∈ L∞(I;H) and the convergences

ü(en) ⇀
∗ ü∗ in L∞(I;H),

u̇(en) ⇀
∗ u̇∗ in L∞(I;V ), u̇(en) → u̇∗ in C(Ī;H),

u(en) ⇀
∗ u∗ in L∞(I;V ), u(en) → u∗ in C(Ī;C(Ω̄))

(16)

for a chosen subsequence. Functions un ≡ u(en) solve the initial value state problem (5),(6) for
e ≡ en. Using a uniform Lipschitz continuity of gδ, and the convergences (15),(16) we obtain
that u∗ solves the problem (5),(6).

We have then u∗ ≡ u(e∗) due to Theorem 2.2 and hence

u(en) ⇀ u(e∗) in L2(I;V ), en ⇀ e in H2(Ω).

Property (13) then imply that u(e∗) is a minimum of a functional J .

3.2. Necessary optimality conditions. Let us introduce the Banach space

W = {w ∈ L2(I;V ) : ẇ ∈ L2(Q), ẅ ∈ L2(I;V
∗)}.

with a norm

∥w∥W = ∥w∥L2(I;V ) + ∥ẇ∥L2(Q) + ∥ẅ∥L2(I;V ∗).

In a similar way as in [1], [2] the following theorem about Fréchet differentiability of the mapping
e 7→ u(e) can be verified.

Theorem 5. The mapping u(·) : Ead → W is Fréchet differentiable and its derivative
z ≡ z(h) = u′(e)h ∈ W, h ∈ H2(Ω) fulfils for every e ∈ Ead uniquely the problem

(17) A(e)z = −B(e)h, z(0) = ż(0) = 0
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with the operators A(e) : W → L2(I;V
∗), B(e) : H2(Ω) → L2(I;V

∗) defined by

⟨⟨A(e)z, y⟩⟩ =
∫ T

0
⟨z̈, ey⟩ dt+

∫
Q

[
e3aijkℓzxixjyxkxℓ

+ q(x)g′δ(ω(e))zy
]
dx dt,(18)

⟨⟨B(e)h, y⟩⟩ =
∫
Q
h[ü(e)y + 3e2aijkℓuxixj (e)yxkxℓ

+
1

2
q(x)g′δ(ω(e))y] dx dt,(19)

ω(e) = u(e) + 1
2(e− emax), y ∈ L2(I;V ).

In order to derive necessary optimality conditions we assume that the cost functional
J(·, ·) : L2(I;V )×H2(Ω) → R is Fréchet differentiable.

The optimal control problem can be expressed in a form

(20) j(e∗) = min
e∈Ead

j(e), j(e) = J(u(e), e).

The functional j in (20) is Fréchet differentiable and its derivative in e∗ ∈ Ead has the form

(21) ⟨j′(e∗), h⟩ = ⟨⟨Ju(u(e∗), e∗), u′(e∗)h⟩⟩+ ⟨Je(u(e∗), e∗), h⟩−2, h ∈ H2(Ω)

with the duality pairings ⟨⟨·, ·⟩⟩, ⟨·, ·⟩−2 between L2(I;V )∗ and L2(I;V ), (H2(Ω))∗ and H2(Ω)
respectively.

The optimal thickness e∗ ∈ Ead fulfils the variational inequality

(22) ⟨j′(e∗), e− e∗⟩−2 ≥ 0 ∀e ∈ Ead.

which can be expressed in a form

(23) ⟨⟨Ju(u(e∗), e∗), u′(e∗)(e− e∗)⟩⟩+ ⟨Je(u(e∗), e∗), e− e∗⟩−2 ≥ 0 ∀e ∈ Ead.

Applying Theorem 3.2 we obtain necessary optimality conditions in a form of a system with
an adjoint state p∗:

Theorem 6. The optimal thickness e∗, the corresponding state (deflection) u∗ ≡ u(e∗) and the
adjoint state p∗ ≡ p(e∗) are solutions of the initial value problem∫

Q

[
e∗u

∗
tty + e3∗(x)aijkℓu

∗
xixj

yxkxℓ
+ q(x)gδ(u

∗)y
]
dx dt =

∫
Q
f(t, x)y dx dt ∀ y ∈ L2(I;V ),

u∗(0) = u0, u∗t (0) = v0,

A(e∗)p
∗ = −Ju(u

∗, e∗); p∗(T ) = p∗t (T ) = 0,

⟨⟨B(e∗)(e− e∗), p
∗⟩⟩+ ⟨Je(u∗, e∗), e− e∗⟩−2 ≥ 0 ∀e ∈ Ead.

Remark 7. If the partial derivative e 7→ Je(u(e), e) is strongly monotone i.e.

⟨Je(u(e1), e1)− Je(u(e2), e2), e1 − e2⟩2 ≥ N∥e∥22 ∀e1, e2 ∈ H2(Ω), N > 0,

then it is possible after using the variational inequality (23) to obtain for sufficiently large N
the uniqueness of the Optimal control e∗.

Remark 8. Let δn be the sequence of positive numbers fulfilling limn→∞ δn = 0. Using the
same approach as in the proofs of Theorems 2.2 and 3.2 we can derive the convergence of the
sequence of solutions {uδn} of the state problem (5), (6) with δ ≡ δn to a solution of the
original initial-boundary value problem for a beam vibrating against Winkler foundation with a
function u 7→ [u+ 1

2(e− emax)]
+ instead of a regularized u 7→ gδ(u+ 1

2(e− emax)). It is an open
and interesting question to investigate the corresponding sequences of optimal controls and of
necessary optimality conditions.
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