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Abstract. Relative numerical ranges are introduced and their basic properties are listed.
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1. Introduction

Let H be a separable complex Hilbert space. We denote by SH the unit sphere of H and
by B(H ) the Banach algebra of all bounded linear operators on H . The numerical range of
S ∈ B(H ) is W (S) = {⟨Sx, x⟩; x ∈ SH }. We are interested in some parts of W (S), called
relative numerical ranges, which are specified by an operator T ∈ B(H ). To motivate our
definition, we begin with the following lemma.

Lemma 1. Let K ̸= {0} be a closed subspace of H and P be the orthogonal projection onto
K . Then, for S ∈ B(H ), the closure of the numerical range of the compression of S to K is

(1) W (PS|K ) = {λ ∈ C; ∃ (xn)∞n=1 ⊆ SH : lim
n→∞

∥Pxn∥ = ∥P∥ and lim
n→∞

⟨Sxn, xn⟩ = λ}.

The set on the right hand side of (1) has meaning if P is replaced by an arbitrary T ∈ B(H ).
Let

(2) WT (S) = {λ ∈ C; ∃ (xn)∞n=1 ⊆ SH : lim
n→∞

∥Txn∥ = ∥T∥ and lim
n→∞

⟨Sxn, xn⟩ = λ}.

Following Magajna [2], we call WT (S) the numerical range of S relative to T . In the case
S = T , (2) reduces to the Stampfli’s maximal numerical range of T , see [3]. On the other hand,

WI(S) = W (S), where I is the identity operator on H . Actually, it is clear from the definition

that WT (S) = W (S) for any operator T which is a scalar multiple of an isometry.
Recall that a number λ ∈ C is an approximate eigenvalue of T ∈ B(H ) if there exists

(xn)
∞
n=1 ⊆ SH , called a sequence of approximate eigenvectors of T at λ, such that lim

n→∞
∥Txn−

λxn∥ = 0. It is obvious that the set σap(T ) of all approximate eigenvalues of T is a part of the
spectrum σ(T ) and it is well-known that ∂σ(T ), the boundary of σ(T ), is a subset of σap(T ). In
particular, if T is a selfadjoint operator, then σ(T ) = σap(T ).

Let |T | be the unique positive square root of T ∗T .

Lemma 2. Let T ∈ B(H ). If (xn)
∞
n=1 ⊆ SH , then lim

n→∞
∥Txn∥ = ∥T∥ if and only if (xn)

∞
n=1

is a sequence of approximate eigenvectors of |T | at ∥T∥.

Motivated by Lemma 2 we introduce the following definition.

Definition 3. Let T ∈ B(H ) and r ∈ σ(|T |). The numerical range of S ∈ B(H ) relative to T
at r is

W r
T (S) = {λ ∈ C; ∃ (xn)∞n=1 ⊆ SH : lim

n→∞
∥|T |xn − rxn∥ = 0 and lim

n→∞
⟨Sxn, xn⟩ = λ}.

Note that it follows from the definition that W r
T (S) = W r

|T |(S). In the following theorem we

list properties of the relative numerical ranges.

Theorem 4. Let S, T ∈ B(H ) and r ∈ σ(|T |).
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(i) W r
T (S) is a non-empty closed convex subset of W (S).

(ii) W r
T (S

∗) = {λ; λ ∈ W r
T (S)} and W r

T (αS + βI) = αW r
T (S) + β, where α, β ∈ C are

arbitrary.
(iii) Assume that γ ∈ C is a non-zero number and V ∈ B(H ) is an isometry. Then

W
|γ|r
γV T (S) = W r

T (S).

(iv) If f is a continuous real-valued function on σ(|T |), then W r
T (S) ⊆ W

|f(r)|
f(|T |)(S) for every

S ∈ B(H ). Moreover, if f is injective and f(t) ≥ 0 for all t ∈ σ(|T |), then W r
T (S) =

W
f(r)
f(|T |)(S) for every S ∈ B(H ).

2. Zero in the relative numerical range

It is known that the position of zero with respect to the numerical range of S ∈ B(H ) gives
some information about S. In the following proposition we show that the presence of 0 in
W r

T (S
∗T ) gives lower bound for the distance from T to the linear space spanned by S.

Proposition 5. Let S, T ∈ B(H ) and r ∈ σ(|T |). If 0 ∈ W r
T (S

∗T ), then dist(T,CS) ≥ r.
Hence, dist(T,CS) ≥ sup{r ∈ σ(|T |); 0 ∈ W r

T (S
∗T )}.

For r = ∥T∥, Proposition 5 implies dist(T,CS) = ∥T∥ whenever 0 ∈ W
∥T∥
T (S∗T ) because

the inequality dist(T,CS) ≤ ∥T∥ always holds. Actually the conditions dist(T,CS) = ∥T∥ and

0 ∈ W
∥T∥
T (S∗T ) are equivalent.

Theorem 6. Let S, T ∈ B(H ) be arbitrary. Then ∥T∥ = dist(T,CS) if and only if 0 ∈
W

∥T∥
T (S∗T ).

We mention a few consequences of Theorem 6.

Corollary 7. Let V ∈ B(H ) be an isometry and S ∈ B(H ) be an arbitrary operator. Then

dist(V,CS) = 1 if and only if 0 ∈ W (V ∗S). In particular, dist(I,CS) = 1 if and only if

0 ∈ W (S).

Corollary 8. An operator S ∈ B(H ) is non-invertible if and only if dist(U,CS) = 1 for every
unitary operator U .

Corollary 9. If S is invertible, then there exists a unitary operator U ∈ B(H ) and a (non-zero)
number α such that ∥U∗−αS−1∥ < 1. In particular, if ∥I−S∥ < 1, then there exists α ∈ C\{0}
such that ∥I − αS−1∥ < 1.

Corollary 10. If T ∈ B(H ) is invertible, then there exists λ ∈ C such that ∥T ∗ − λT−1∥ < 1.

We close the paper with a result which gives a characterization of W (S) \ σ(S).
Corollary 11. Let S ∈ B(H ). For λ ∈ C \ σ(S), the following assertions are equivalent:

(i) λ ∈ W (S) \ σ(S); (ii) inf
µ∈C

∥I − µ(S − λI)−1∥ = 1; (iii) inf
µ∈C

∥(S − λI)−1(S − µI)∥ = 1.

Proofs of all mentioned results can be find in [1].
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