ON THE RELATIVE NUMERICAL RANGES OF AN OPERATOR

JANKO BRAČIČ AND CRISTINA DIOGO

ABSTRACT. Relative numerical ranges are introduced and their basic properties are listed.

1. INTRODUCTION

Let \mathscr{H} be a separable complex Hilbert space. We denote by $\mathscr{S}_{\mathscr{H}}$ the unit sphere of \mathscr{H} and by $\mathscr{B}(\mathscr{H})$ the Banach algebra of all bounded linear operators on \mathscr{H} . The numerical range of $S \in \mathscr{B}(\mathscr{H})$ is $W(S) = \{\langle Sx, x \rangle; x \in \mathscr{S}_{\mathscr{H}}\}$. We are interested in some parts of W(S), called relative numerical ranges, which are specified by an operator $T \in \mathscr{B}(\mathscr{H})$. To motivate our definition, we begin with the following lemma.

Lemma 1. Let $\mathscr{K} \neq \{0\}$ be a closed subspace of \mathscr{H} and P be the orthogonal projection onto \mathscr{K} . Then, for $S \in \mathcal{B}(\mathscr{H})$, the closure of the numerical range of the compression of S to \mathcal{K} is

(1)
$$\overline{W(PS|_{\mathscr{H}})} = \{\lambda \in \mathbb{C}; \exists (x_n)_{n=1}^{\infty} \subseteq \mathscr{S}_{\mathscr{H}} : \lim_{n \to \infty} \|Px_n\| = \|P\| \text{ and } \lim_{n \to \infty} \langle Sx_n, x_n \rangle = \lambda \}.$$

The set on the right hand side of (1) has meaning if P is replaced by an arbitrary $T \in \mathcal{B}(\mathcal{H})$. Let

(2)
$$W_T(S) = \{\lambda \in \mathbb{C}; \exists (x_n)_{n=1}^{\infty} \subseteq \mathscr{S}_{\mathscr{H}} : \lim_{n \to \infty} ||Tx_n|| = ||T|| \text{ and } \lim_{n \to \infty} \langle Sx_n, x_n \rangle = \lambda \}.$$

Following Magajna [2], we call $W_T(S)$ the numerical range of S relative to T. In the case S = T, (2) reduces to the Stampfli's maximal numerical range of T, see [3]. On the other hand, $W_I(S) = \overline{W(S)}$, where I is the identity operator on \mathscr{H} . Actually, it is clear from the definition that $W_T(S) = \overline{W(S)}$ for any operator T which is a scalar multiple of an isometry.

Recall that a number $\lambda \in \mathbb{C}$ is an approximate eigenvalue of $T \in \mathcal{B}(\mathscr{H})$ if there exists $(x_n)_{n=1}^{\infty} \subseteq \mathscr{S}_{\mathscr{H}}$, called a sequence of approximate eigenvectors of T at λ , such that $\lim_{n \to \infty} ||Tx_n - \lambda x_n|| = 0$. It is obvious that the set $\sigma_{ap}(T)$ of all approximate eigenvalues of T is a part of the spectrum $\sigma(T)$ and it is well-known that $\partial \sigma(T)$, the boundary of $\sigma(T)$, is a subset of $\sigma_{ap}(T)$. In particular, if T is a selfadjoint operator, then $\sigma(T) = \sigma_{ap}(T)$.

Let |T| be the unique positive square root of T^*T .

Lemma 2. Let $T \in \mathcal{B}(\mathcal{H})$. If $(x_n)_{n=1}^{\infty} \subseteq \mathscr{S}_{\mathcal{H}}$, then $\lim_{n \to \infty} ||Tx_n|| = ||T||$ if and only if $(x_n)_{n=1}^{\infty}$ is a sequence of approximate eigenvectors of |T| at ||T||.

Motivated by Lemma 2 we introduce the following definition.

Definition 3. Let $T \in \mathcal{B}(\mathcal{H})$ and $r \in \sigma(|T|)$. The numerical range of $S \in \mathcal{B}(\mathcal{H})$ relative to T at r is

$$W_T^r(S) = \{ \lambda \in \mathbb{C}; \ \exists \ (x_n)_{n=1}^{\infty} \subseteq \mathscr{S}_{\mathscr{H}} \colon \lim_{n \to \infty} \||T|x_n - rx_n\| = 0 \quad \text{and} \quad \lim_{n \to \infty} \langle Sx_n, x_n \rangle = \lambda \}.$$

Note that it follows from the definition that $W_T^r(S) = W_{|T|}^r(S)$. In the following theorem we list properties of the relative numerical ranges.

Theorem 4. Let $S, T \in \mathcal{B}(\mathcal{H})$ and $r \in \sigma(|T|)$.

²⁰¹⁰ Mathematics Subject Classification. 47A12.

The first author has been supported in part by the Slovenian Research Agency through the research program P2-0268 and the work of the second author was partially funded by FCT/Portugal through project PEst-OE/EEI/LA0009/2013.

- (i) $W_T^r(S)$ is a non-empty closed convex subset of $\overline{W(S)}$.
- (ii) $W_T^r(S^*) = \{\overline{\lambda}; \lambda \in W_T^r(S)\}$ and $W_T^r(\alpha S + \beta I) = \alpha W_T^r(S) + \beta$, where $\alpha, \beta \in \mathbb{C}$ are arbitrary.
- (iii) Assume that $\gamma \in \mathbb{C}$ is a non-zero number and $V \in \mathcal{B}(\mathcal{H})$ is an isometry. Then $W_{\gamma VT}^{|\gamma|r}(S) = W_T^r(S).$
- (iv) If f is a continuous real-valued function on $\sigma(|T|)$, then $W_T^r(S) \subseteq W_{f(|T|)}^{|f(r)|}(S)$ for every $S \in \mathcal{B}(\mathscr{H})$. Moreover, if f is injective and $f(t) \ge 0$ for all $t \in \sigma(|T|)$, then $W_T^r(S) = W_{f(|T|)}^{f(r)}(S)$ for every $S \in \mathcal{B}(\mathscr{H})$.

2. Zero in the relative numerical range

It is known that the position of zero with respect to the numerical range of $S \in \mathcal{B}(\mathcal{H})$ gives some information about S. In the following proposition we show that the presence of 0 in $W_T^r(S^*T)$ gives lower bound for the distance from T to the linear space spanned by S.

Proposition 5. Let $S, T \in \mathcal{B}(\mathcal{H})$ and $r \in \sigma(|T|)$. If $0 \in W_T^r(S^*T)$, then $\operatorname{dist}(T, \mathbb{C}S) \geq r$. Hence, $\operatorname{dist}(T, \mathbb{C}S) \geq \sup\{r \in \sigma(|T|); 0 \in W_T^r(S^*T)\}.$

For r = ||T||, Proposition 5 implies $\operatorname{dist}(T, \mathbb{C}S) = ||T||$ whenever $0 \in W_T^{||T||}(S^*T)$ because the inequality $\operatorname{dist}(T, \mathbb{C}S) \leq ||T||$ always holds. Actually the conditions $\operatorname{dist}(T, \mathbb{C}S) = ||T||$ and $0 \in W_T^{||T||}(S^*T)$ are equivalent.

Theorem 6. Let $S, T \in \mathcal{B}(\mathcal{H})$ be arbitrary. Then $||T|| = \text{dist}(T, \mathbb{C}S)$ if and only if $0 \in W_T^{||T||}(S^*T)$.

We mention a few consequences of Theorem 6.

Corollary 7. Let $V \in \mathcal{B}(\mathcal{H})$ be an isometry and $S \in \mathcal{B}(\mathcal{H})$ be an arbitrary operator. Then $\operatorname{dist}(V, \mathbb{C}S) = 1$ if and only if $0 \in \overline{W(V^*S)}$. In particular, $\operatorname{dist}(I, \mathbb{C}S) = 1$ if and only if $0 \in \overline{W(S)}$.

Corollary 8. An operator $S \in \mathcal{B}(\mathcal{H})$ is non-invertible if and only if $dist(U, \mathbb{C}S) = 1$ for every unitary operator U.

Corollary 9. If S is invertible, then there exists a unitary operator $U \in \mathcal{B}(\mathcal{H})$ and a (non-zero) number α such that $||U^* - \alpha S^{-1}|| < 1$. In particular, if ||I - S|| < 1, then there exists $\alpha \in \mathbb{C} \setminus \{0\}$ such that $||I - \alpha S^{-1}|| < 1$.

Corollary 10. If $T \in \mathcal{B}(\mathcal{H})$ is invertible, then there exists $\lambda \in \mathbb{C}$ such that $||T^* - \lambda T^{-1}|| < 1$.

We close the paper with a result which gives a characterization of $\overline{W(S)} \setminus \sigma(S)$.

Corollary 11. Let $S \in \mathcal{B}(\mathcal{H})$. For $\lambda \in \mathbb{C} \setminus \sigma(S)$, the following assertions are equivalent:

(*i*)
$$\lambda \in \overline{W(S)} \setminus \sigma(S)$$
; (*ii*) $\inf_{\mu \in \mathbb{C}} \|I - \mu(S - \lambda I)^{-1}\| = 1$; (*iii*) $\inf_{\mu \in \mathbb{C}} \|(S - \lambda I)^{-1}(S - \mu I)\| = 1$.

Proofs of all mentioned results can be find in [1].

References

- [1] J. Bračič, C. Diogo, *Relative numerical ranges*, Lin. Alg. Appl., **485** (2015), 208–221.
- B. Magajna, On the distance to finite-dimensional subspaces in operator algebras, J. London Math. Soc., 47 (1993), 516–532.
- [3] J. G. Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.

UNIVERSITY OF LJUBLJANA, NTF, AŠKERČEVA C. 12, SI-1000 LJUBLJANA, SLOVENIA *E-mail address*: janko.bracic@fmf.uni-lj.si

INSTITUTO UNIVERSITÁRIO DE LISBOA (ISCTE-IUL), AVENIDA DAS FORÇAS ARMADAS, P-1649-026 LIS-BOA AND CENTER FOR MATHEMATICAL ANALYSIS, GEOMETRY, AND DYNAMICAL SYSTEMS, DEPARTAMENTO DE MATEMÁTICA, INSTITUTO SUPERIOR TÉCNICO, P-1049-001 LISBOA, PORTUGAL

E-mail address: cristina.diogo@iscte.pt