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Abstract. We deal with hyperbolic variational inequalities modeling the behaviour of elastic
and viscoelastic anisotropic plates vibrating against a rigid obstacle. We solve the presented
initial-boundary value problems by the penalization method. The time derivative of the function
representing the nonstationary deflection of the plate middle surface is not continuous due to
the hitting the obstacle. The acceleration term appears only implicitly in the viscoelastic case
and has the form of a vector measure in the elastic case.

1. Problem formulation and penalization

We deal here with simply supported short memory viscoelastic and elastic anisotropic plate
of the constant thickness h > 0 vibrating against a rigid obstacle. We have considered similar
problems for von Kármán plates in [1] and [2] respectively. We assume a convex bounded region
Ω ⊂ R2 to be the middle surface of a plate. Its boundary Γ is CLip-smooth with an outer unit
normal vector n = (n1, n2). We set further I ≡ (0, T ) a bounded time interval, Q = I × Ω,
S = I × Γ the time-space sets. Due to the rigid obstacle in a form of x3 = −h/2 the initial-
boundary value problem for the movement of middle surfaces of plates has the form

ü− a∆ü+ (Aijkℓu̇xixj +Bijkℓuxixj )xkxℓ
= f + g,

u ≥ 0, g ≥ 0, ug = 0

}
on Q ,(1)

u = w, M (u) := (Aijkℓu̇xixj +Bijkℓuxixj )nknℓ = 0 on S ,(2)

u(0, ·) = u0 ≥ 0 , u̇(0, ·) = v0 on Ω .(3)

The Einstein summation convection has been applied above. The unknown function u expresses
the deflection of of the middle surface. The plate is acting upon a perpendicular load f and an
unknown contact force g between the plate and the contact plane x3 = −h/2. The constant a > 0
is a rotary inertia term, Aijkℓ, Bijkℓ are the viscoelasticity and elasticity tensors respectively.

For any η > 0 we define the penalized problem in a form

ü− a∆ü+ (Aijkℓu̇xixj +Bijkℓuxixj )xkxℓ
= f + η−1u− on Q ,(4)

u = w, M (u) := (Aijkℓu̇xixj +Bijkℓuxixj )nknℓ = 0 on S ,(5)

u(0, ·) = u0 ≥ 0, u̇(0, ·) = v0 on Ω .(6)

We introduce the Hilbert spaces

H ≡ L2(Ω), Hk(Ω) = {y ∈ H : Dαy ∈ H, |α| = k}, k = 1, 2

with the standard inner products (·, ·), (·, ·)k, k ∈ N, the norms | · |0, ∥ · ∥k and the space

V = H2(Ω) ∩ H̊1(Ω) = {y ∈ H2(Ω) : y = 0 on Γ}
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with the inner product and the norm

((y, z)) =

∫
Ω
yxixj (x)zxixj (x) dx, ∥y∥ = ((y, y))1/2, y, z ∈ V.

We denote by V ∗ the dual space of linear bounded functionals over V with duality pairing
⟨F, y⟩∗ = F (y), F ∈ V ∗, y ∈ V. It is a Banach space with a norm ∥ · ∥∗.
The spaces V, H, V ∗ form the Gelfand triple meaning the dense and compact embedings

V ↪→↪→ H ↪→↪→ V ∗.

For a Hilbert space X we denote by L2(I;X) the Hilbert space of all functions y : I 7→ X such
that ∥y(·)∥X ∈ L2(0, T ) with the inner product

(u, v)L2(I,X) =

∫
I
(u, v)X dt, u, v ∈ L2(I,X),

by L∞(I;X) the space of essentially bounded functions with values in X, and by C(Ī;X) the
space of continuous functions y : Ī 7→ X, Ī = [0, T ]. For k ∈ N we denote by Ck(Ī;X) the spaces
of k-times continuously differentiable functions defined on Ī with values in X. and we set

Hk(I;X) = {v ∈ Ck−1(Ī;X) :
dkv

dtk
∈ L2(I;X)}

the Hilbert spaces with the inner products

(u, v)Hk(I,X) =

∫
I
[(u, v)X +

k∑
j=1

(uj , vj)X ] dt, k ∈ N.

If Y is a Banach space, then L1(I;X) is a Banach space of functions y : I 7→ Y such that
∥y(·∥Y ∈ L1(0, T ) with the norm

∥y∥L1(I;Y ) =

∫
I
∥y∥Y dt.

2. Solving the viscoelastic problem

We start with the viscoelastic case. It differs from the elastic case in the appearing of nonzero
tensor Aijkℓ. We assume both tensors to be symmetric and positively definite i.e.

(7) Aijkℓ = Akℓij = Ajikℓ, α εijεij ≤ Aijkℓ εijεkℓ ∀ {εij} ∈ R2×2
sym, α > 0,

(8) Bijkℓ = Bkℓij = Bjikℓ, β εijεij ≤ Bijkℓ εijεkℓ ∀ {εij} ∈ R2×2
sym, β > 0.

We define almost everywhere on H2(Ω) the bilinear forms by

(9) A(w, y) = Aijkℓwxixjyxkxℓ
, B(w, y) = Bijkℓwxixjyxkxℓ

.

Further we assume w ∈ H2(Ω), w > 0; w|Γ = u0|Γ , u0, v0 ∈ V, f ∈ L2(Q).

2.1. Penalized problem. We formulate a weak solution of the penalized problem (4)-(6) for
the viscoelastic case.

Problem Pv
η . We look for u ∈ L2(I;V ) + w such that u̇ ∈ L2(I;V ), ü ∈ L2(I; H̊

1(Ω)),
the equation

(10)

∫
Q

[
üz +∇ü · ∇z +A(u̇, z) +B(u, z)− η−1u−z

]
dx dt =

∫
Q
fz dx dt

holds for all z ∈ L2(I;V ) together with the initial conditions (6).

We derive the a priori estimates for solutions of the Problem Pv
η . We insert

z =

{
u̇ for t ≤ s

0 for t > s
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in (10) for arbitrary s ∈ I, denote Qs = (0, s)×Ω and obtain

(11)

∫
Qs

[
1

2
∂t

(
u̇2 + a|∇u̇|2 +B(u, u) + η−1(u−)2

)
+A(u̇, u̇)

]
dx dt =

∫
Qs

fu̇ dx dt.

Applying the coercivity assumptions (7), (8) we obtain the η−independent a priori estimates

(12) ∥u̇∥L2(I,V ) + ∥u̇∥L∞(I,H1(Ω)) + ∥u∥L∞(I,V ) ≤ C1 ≡ C1(f, u0, v0, w)

and formulate the existence and uniqueness theorem of a solution to the penalized problem.

Theorem 1. There exists a unique solution of the problem Pv
η .

Proof. Let {wi ∈ V ; i ∈ N} be an orthonormal basis of V . We construct the Galerkin
approximation um of a solution in a form

um(t) =
m∑
i=1

αi(t)wi, αi(t) ∈ R, i = 1, ...,m, m ∈ N

given by the solution of the approximated problem∫
Ω

(
a∇üm(t) · ∇wi + üm(t)wi +A(u̇m(t), wi) +B(um(t), wi)− η−1um(t)−wi

)
dx

=

∫
Ω
f(t)wi dx, i = 1, ...,m,

(13)

um(0) = u0m, u̇m(0) = v0m; u0m → u0, u0m → v0 in V.(14)

Applying the estimates (12) we obtain in the same way as in [1] the subsequence of {um}
(denoted again by {um}), and a function u such that the following convergences

um ⇀∗ u in L∞(I;V ),

u̇m ⇀∗ u̇ in L∞(I;H1(Ω)),

u̇m ⇀ u̇ in L2(I;V ),

üm ⇀ ü in L2(I;H
1(Ω)),

u̇m → u̇ in L2(I;H
2−ε(Ω)) ∀ε ∈ (0, 1)

(15)

hold and u solves (10). The initial conditions (6) follow due to (14) and the existence part of
the proof is completed. The uniqueness follows using the Gronwall lemma.

2.2. The original problem. To state the variational formulation of this problem we shall use
the shifted cone

(16) K := {y ∈ L2(I;V ) + w; ẏ ∈ L2(I;H
1(Ω)), y ≥ 0}.

Performing the integration by parts both with respect to t and x we obtain the formulation
without an acceleration term.

Problem Pv We look for u ∈ K such that u̇ ∈ L2(I;V ) and the inequality∫
Q

(
A(u̇, y − u) +B(u, y − u)− a∇u̇ · ∇(ẏ − u̇)− u̇(ẏ − u̇)

)
dx dt

+

∫
Ω

(
a∇u̇ · ∇(y − u) + u̇(y − u)

)
(T, ·) dx

≥
∫
Ω

(
a∇v0 · (∇y(0, ·)−∇u0) + v0(y(0, ·)− u0)

)
dx+

∫
Q
f(y − u) dx dt.

(17)

holds for any y ∈ K .
Using the solutions of the penalized problem Pv

η , η > 0, we verify the following existence
theorem.

Theorem 2. There exists a solution of the Problem Pv.
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Proof. The solution {uη} of Pv
η fulfils the η-independent estimate

(18) ∥u̇η∥L2(I,V ) + ∥u̇η∥L∞(I,H1(Ω)) + ∥uη∥L∞(I,V ) ≤ C1 ≡ C(f, u0, v0, w)

After putting u = uη, z = w − uη in (10) we obtain in the same way as in the case of clamped
plate in [1] the following crucial estimate

(19) ∥η−1u−η ∥L1(Q) + ∥ − a∆üη + üη∥L1(I;V ∗) ≤ C2(f, u0, v0, w)

After applying the generalization of the Aubin lemma derived in [6], the relative compactness of
the sequence {−a∆üηk + üηk}, ηk → 0+ implies the strong convergence u̇k → u̇ in L2(I;H

1(Ω).
The other convergences are of the same type as in the first triple of (15) and the existence of a
solution follows from the penalized problems Pv

η , η > 0.

3. Solving the elastic problem

We assume Bijkℓ = 0, i, j, k, ℓ ∈ {1, 2} in this case.

3.1. Elastic penalized problem. We formulate a weak solution of the penalized problem (4)-
(6) for the elastic case.

Problem Pe
η . We look for u ∈ L2(I;V ) + w such that ü ∈ L2(Q), the equation

(20)

∫
Q

[
ü(z −∆z) +B(u, z)− η−1u−z

]
dx dt =

∫
Q
fz dx dt

holds for all z ∈ L2(I;V ) together with the initial conditions (6).
In the same way as in the viscoelastic case we obtain η-independent a priori estimates of

solutions u ≡ uη:

(21) ∥u̇∥L∞(I,H1(Ω)) + ∥u∥L∞(I,V ) ≤ C3 ≡ C3(f, u0, v0, w)

and formulate the existence and uniqueness theorem of a solution to the penalized problem.

Theorem 3. There exists a unique solution of the problem Pe
η .

3.2. The elastic contact problem. In this case we do not have the strong convergence of a
sequence of time derivatives u̇ηk as in the viscoelastic case. The L1(Q) estimate of the penalty
term implies the boundedness of the corresponding acceleration terms in the space M (I;L2(Ω))
of vector measures (see [3] for details).

We introduce the shifted cone

(22) C := {y ∈ Cw(Ī;V ) + w; y ≥ 0},
where Cw(Ī;V ) is the set of weakly continuous functions mapping the time interval Ī into V .
We are looking for a solution in the shifted cone Y = {u ∈ w + W } with the set

(23) W = {v ∈ Cw(Ī;V ), v̇ ∈ Rw(Ī , H̊
1(Ω)), v̈ ∈ M0(Q)}.

We denote by Rw(Ī , H̊
1(Ω)) the set of all weakly right continuous weakly regulated maps map-

ping Ī to H̊1(Ω)) and by M0(Q) the set of signed measures M on Q fulfilling∣∣∣∣∫
Q
φdM

∣∣∣∣ ≤ c|φ|C0(I;L2(Ω)) ∀φ ∈ C0(Q).

We remark that C0(I;L2(Ω)) and C0(Q) are the sets of continuous functions from R to L2(Ω)
vanishing outside I and from R3 to R vanishing outside Q respectively.

Problem Pe To find u ∈ Y such that the inequality

(24)

∫
Q
(1− a∆)(y − u) dü ≥

∫
Q
[f(y − u)−B(u, y − u)] dx dt

holds for all y ∈ C and the initial conditions (3) are fulfilled.

Using the penalized Problem Pe
η with the estimates (21) and the L1(Q) estimate of the penalty
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term we obtain after applying the technique of vector measures from [3] (see also [4], [7]) the
existence of a solution in

Theorem 4. There exists a solution of the Problem Pe.

Remark 5. The set W in (23) can be experssd also in the form

W = {v ∈ L∞(I;V ) : v̇ ∈ L∞(I, H̊1(Ω)), v̈ ∈ M0(Q)}.
The representation (23) enables to express directly the initial conditions (3).

Remark 6. The interpretation of accelerations through vector measures is possible also in the
viscoelastic case.
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Adv. Math. Sci. Appl. 16 (2006), 175-187.
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