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The main goal of this article is to derive sufficient conditions of Landesman-Lazer type for the
existence of a solution of a special type of generalized boundary value problem for a second order
differential equation with possibly unbounded nonlinearity. Generalized boundary conditions
are given by continuous linear functionals. In such case the notion of adjoint problem to the
associated linear problem cannot be expressed by a classical differential equation[5]. We use
duality principle instead of adjointness. The kernel of linear operator defined by the problem
below is one dimensional. To derive a condition of Landesman-Lazer type [2], we use Ljapunov
-Schmidt decomposition and Leray-Schauder degree [1], [6].

We consider the nonlinear generalized boundary value problem

x′′ + x+ f(t, x) = h(t),

x(0) = x(2π), x′(t0) = 0,
(1)

where I = [0, 2π], f : I ×R → R is a continuous function and h : L1(I).
A solution x(t) is a function, x ∈ C1(I), x′′ ∈ L1(I).
We denote Z = L1(I), Y = {y ∈ C1(I); y′′ ∈ L1(I), y(0) = y(2π), y′(t0) = 0}.
We use the bilinear duality functional D : (Z, Y ) → R given by

D(z, y) =

∫ t0

0
z(t)y(t0 − t) dt+

∫ 2π

t0

z(t)y(2π + t0 − t) dt .

By the linear part of boundary value problem (1)

x′′ + x = h(t) ,

x(0) = x(2π), x′(t0) = 0 ,
(2)

is defined the linear operator L : Y → Z

Lx = x′′ + x .

A simple computation leads to D(Lx, y) = D(Ly, x) for each x, y ∈ Y . This identity together
with the separation property of D means that the linear three point boundary value problem is
selfdual.

The kernel of L is one dimensional, N(L) = [cos(t − t0)]. As the operator L is Fredholm of
index zero [3], the codimension of ImL is one and Z=ImL⊕ Z2 with Z2 = [sin(t− 2t0)].

Let X = C(I) and N : X → Z be the nonlinear operator defined by N(x) = f(t, x(t)).
Then the problem (1) can be written in the form

Lx+N(x) = h . (3)

The spaces X, Y and Z are decomposed to direct sums X = N(L) ⊕ X2, Y = N(L) ⊕ Y2,
Z = Z2 ⊕ ImL, dimN(L) = dimZ2 = 1. We define the natural isomorphism J : Z2 → N(L) by

J(k cos(t− t0)) = k sin(t− 2t0) and a projection Q : Z → Z2 given by Q(z) = 1
π

∫ 2π
0 z(t) sin(t−

2t0) dt sin(t− 2t0).
The following existence theorem holds.
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Theorem 1. Suppose that

(i) f : I × R → R is a continuous function of sublinear growth, i.e. the following a priori
estimation holds

∃C > 0, 0 < α < 1 , r > 0 such that ∀t ∈ I, |x| > r; |f(t, x)| ≤ C|x|α ,
(ii) there exist f+, f− ∈ L1(I) such that

f+(t) = lim
x→∞

f(t, x) , f−(t) = lim
x→−∞

f(t, x) ,

(iii) denoting It0+ = {t ∈ I; cos(t − t0) ≥ 0}, It0− = {t ∈ I; cos(t − t0) ≤ 0} the following
Landesman-Lazer type condition holds∫

It0+

f+(t) sin(t− 2t0) dt+

∫
It0−

f−(t) sin(t− 2t0) dt >

∫ 2π

0
h(t) sin(t− 2t0) dt >

>

∫
It0+

f−(t) sin(t− 2t0) dt+

∫
It0−

f+(t) sin(t− 2t0) dt .

Then the three point boundary value problem (1) is solvable for each h ∈ L(I) satisfying (iii).

Proof. The operator equation (3) is equivalent to the fixed point problem

x = T (x) , (4)

where T : X → X is defined as

T (x) = Px− JQ(N(x)− h)− L−1
p (I −Q)(N(x)− h) . (5)

Here P : X → N(L) is a projectionQ : Z → Z2 given by P (x) = 1
π

∫ 2π
0 x(t) cos(t−t0) dt cos(t−t0)

and L−1
p : ImL → Y2 is the inverse operator to the restriction L|Y2 which is continuous as the

operator ImL → Y2 and compact as ImL → X. We embed the equation (4) to the homotopic
system of equations

H(λ, x) = 0 , (6)

where H : [0, 1]× Z → Z is defined as H(λ, x) = I − λT (x).
The pair (λ, x) is a solution of (6) iff x = x1 + x2 ∈ N(L)⊕ Y2 and

x2 + λL−1
p (I −Q)(N(x)− h) = 0 ,

(1− λ)x1 + λJQ(N(x)− h) = 0 .
(7)

A solution of (7) is for λ = 1 also solution of (4).
We prove that each possible solution of (7) is bounded. Suppose the opposite that there is a

sequence of solutions xn of (7) xn = x1n + x2n, x1n ∈ D(L), x2n ∈ Y2 such that ∥xn∥ → ∞. By
∥ · ∥ we denote the norm in C(I). The growth assumption on f leads to ∥x2n∥ ≤ c∥xn∥α, and
moreover ∥x2n∥ ≤ c∥xα1n∥ for suitable c > 0 and n sufficiently large.

As xn = cn cos(t − t0) + x2n, then either cn → ∞ and f(t, xn(t)) → f+(t) for t ∈ It0+,
f(t, xn(t)) → f−(t) for t ∈ It0−

or cn → −∞ and f(t, xn(t)) → f−(t) for t ∈ It0+, f(t, xn(t)) → f+(t) for t ∈ It0−.
Both possibilities are in a contradiction with Landesman-Lazer condition (iii).
That means ∥x∥ is bounded for each solution x of (7) by a constant R > 0 independently on

λ.
Set Ω = {x ∈ X; ||x|| < R}. Now either (6) possesses a solution for λ = 1 on the set ∂Ω or

the Leray-Schauder degree of H is well defined on Ω for each 0 ≤ λ ≤ 1 and

d(I − λT,Ω, 0) = d(I,Ω, 0) = 1 .

In both cases (4) is solvable on Ω̄ and its solution x(t) is a solution of the three point boundary
value problem (1). □

The existence of a solution of (1) can be proved also in the case when limit functions f+, f−
are not integrable.
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Theorem 2. Suppose that condition (i) from Theorem 1 holds and

(ii)
lim
x→∞

f(t, x) = f+(t) for each t ∈ I \ I1, where f+ ∈ L1(I \ I1)

lim
x→−∞

f(t, x) = f−(t) for each t ∈ I \ I2, where f− ∈ L1(I \ I2),

where I1 ⊂ {t ∈ I; cos(t − t0) > 0 ∧ sin(t − 2t0) > 0} I2 = {t ∈ I; cos(t − t0) <
0 ∧ sin(t− 2t0) < 0} with µ(I1 ∪ I2) > 0.

(iii)
lim
x→∞

f(t, x) = ∞ ∀t ∈ I1 , lim
x→−∞

f(t, x) = −∞ ∀t ∈ I2 ,

(iv) ∫ 2π

0
h(t) sin(t− 2t0) dt >

∫
It0+

f−(t) sin(t− 2t0) dt+

∫
It0−

f+(t) sin(t− 2t0) dt.

Then three point boundary value problem (1) is solvable for each h ∈ L1(I) satisfying (iv).

Theorem 3. Suppose that condition (i) from Theorem 1 holds and

(ii)
lim
x→∞

f(t, x) = f+(t) for each t ∈ I \ I3 , where f+ ∈ L1(I \ I3)

lim
x→−∞

f(t, x) = f−(t) for each t ∈ I \ I4 , where f− ∈ L1(I \ I4) ,

where I3 ⊂ {t ∈ I; cos(t − t0) > 0 ∧ sin(t − 2t0) < 0}, I4 = {t ∈ I; cos(t − t0) <
0 ∧ sin(t− 2t0) > 0} with µ(I3 ∪ I4) > 0.

(iii)
lim
x→∞

f(t, x) = −∞ ∀t ∈ I3 ,

lim
x→−∞

f(t, x) = ∞ ∀t ∈ I4 ,

(iv) ∫
It0+

f+(t) sin(t− 2t0) dt+

∫
It0−

f−(t) sin(t− 2t0) dt >

∫ 2π

0
h(t) sin(t− 2t0) dt .

Then three point boundary value problem (1) is solvable for each h ∈ L1(I) satisfying (iv).
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